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1 Introduction

The ringing phenomenon is associated to the excitation of a structure at its natural frequency through higher harmonic
components of the wave loading. Observations of this phenomenon on model tests were reported �rst at the beginning of
the 90's, before being observed at full scale during storm events in the North Sea. As the corresponding loading may induce
a signi�cant increase of the fatigue of the structure, the discovery of the phenomenon triggered strong research e�orts
for the understanding and prediction of higher harmonic wave loads on o�shore structures. Using potential �ow theory,
Faltinsen et al (1995) developed a third order perturbation theory in the long wave regime. Malenica & Molin (M&M)
(1995) proposed a complete third order quasi-analytical solution for the triple harmonic force component on a vertical
cylinder in regular waves. Ferrant (1996) used a time domain fully nonlinear boundary element method and obtained
results in good agreement with the M&M's theory. Huseby and Grue (1998) reported experiments on a bottom-mounted
vertical cylinder in deep water conditions, focusing on the third harmonic force components, and con�rming again the
validity of M&M formulation. The confrontation of these experimental data to results of fully nonlinear potential �ow
simulations leads to favorable comparisons up to the seventh harmonic force components, published in Ferrant (1998) and
Huseby & Grue (2000).

In the present paper, we are revisiting this set of data, using the so-called SWENSE method in which the �ow is
decomposed into an incident wave system modelled by fully nonlinear potential �ow theory, and a di�racted/radiated
�ow solved using a modi�ed version of Navier-Stokes equations in which incident �ow components appear as forcing
terms. The main �nding is that the inclusion of viscous e�ects leads to a slightly better agreement with experiments for
the wave frequency component, compared to potential �ow results. A �rst analysis seems to indicate that the observed
deviation between potential �ow and viscous �ow results is due to the in�uence of a minor �ow detachment on the pressure
component of the load, while the frictional component have little in�uence.

2 Numerical method

The SWENSE method divided the problem of wave-structure interaction into two parts: (1) incident part takes into
account the wave propagation in the whole computational domain, where the solution is directly given by potential wave
theory; (2) di�racted part serves as a correction to the incident part due to the presence of body in the wave and the
viscosity. The decomposition is shown by Eqn.1 where the total variable χT is divided into the variable of incident wave
χI and the variable of di�racted �eld χD. χI is explicitly known from potential wave theory, thus only the di�racted
variable χD needs to be calculated by CFD. This decomposition method is �rst suggested by Ferrant et al (2003) and
developed and validated by Gentaz et al (2004) in a �nite di�erences code Icare-Swense using the free surface tracking
method.

χT = χI + χD (1)

Applying the decomposition method on the velocity uT = uI + uD, pressure p = pI +pD and the free surface elevation
hT = hI + hD, and using νe for the e�ective viscosity, the Navier-Stokes equations and the free surface tracking equation
can be transformed into:

∇ • uD = 0 (2)
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The bene�ts of the SWENSE decomposition are: (1) accuracy of the incident wave propagation: as the incident
variables are explicitly obtained by wave theories, the quality of the CFD results does not in�uence the incident wave; (2)
e�ciency: the di�racted �eld only need to be calculated accurately near the o�shore structure, so we can use �ne meshes
close to the structure and coarse meshes far away from the body; (3) simplicity of the far �eld boundary condition: as
the wave is disturbed only in the vicinity of the structure, the boundary conditions for the di�racted variables are set to
be zero in the far �eld.

3 Simulation setup

In this study we consider a bottom-mounted surface piercing vertical circular cylinder in regular waves. The radius of
the cylinder is R=0.03m, the water depth is h=0.6m, the wave is de�ned such as its wave number k satis�es kR=0.245.
A series of simulations is carried out with 8 di�erent wave amplitudes a de�ned by ka=[0.06, 0.08, 0.10, 0.13, 015, 0.17,
0.20, 0.24]. The same cases have been studied experimentally by Huseby and Grue (2000) and numerically by Ferrant
(1998) and Shao and Faltinsen (2014). In contrary to the assumption of potential �ow used in previous studies, we
consider the viscosity of the water and applied the no-slip condition on the cylinder. For the steepest wave, the maximum
Reynolds number calculated based on the diameter of the cylinder and the maximum wave velocity is Re = 1.55 × 104

and the maximum Keulegen-Carpenter number is KC = 3.01, indicating the �ow is likely to oscillate between laminar
and transitional regimes during the wave excitation cycles. The strategy adopted here with respect to this relatively
low Reynolds number problem is a direct modeling of the viscous stresses of the Navier-Stokes equations (no turbulence
model), with a care paid to the mesh size so as to capture as best the viscous e�ects in the vicinity of the body (boundary
layer and �ow detached areas).

The simulations are carried out by the in-house monophase �nite di�erence CFD code Icare-swense. The regular wave
is generated by the stream function theory. A structured cylindrical mesh is used (see Fig.1). The domain's radius is 4
meters, which is approximately equal to 5 times the wave length. In the radial direction the domain is discretized into
128 grids, the minimum grid size being 6×10−6m close to the cylinder to capture the large velocity gradient, and 1 meter
on the far �eld boundary. The large grid size is intentionally applied to absorb the di�racted waves. In the tangential
direction, half of the domain is evenly discretized into 80 grids using the symmetric assumption. Along the vertical axis,
the domain is discretized into 60 grids and the mesh is gradually re�ned near the free surface. All the simulations are ran
for 16 wave periods with 100 time steps per wave period. The start time t=0 is de�ned as the incident wave crest locates
at the center line of the cylinder. The wave amplitude gradually increases from 0 to its target value a in the �rst period.

Figure 1: Computational grid used in Icare-swense

4 Numerical results

During the simulation, the time history of the horizontal force on the cylinder is �rstly recorded and the value from
the 6 to 15 wave period is used for Fourier analysis where steady state has been achieved. The amplitude of high-order
wave force Fn is non-dimensinalized by F

′

n = Fn/(ρgR
3 · (A/R)n). In Fig.2, the �rst to fourth harmonic non-dimensional

force's amplitude and their phase shift are presented with a comparison to the results of Shao et al (2014), Ferrant (1998),
the experiment data of Huseby and Grue (2000), and the analytical solution from Malenica and Molin (1995) which is
represented by the bold dash line.
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(a) First harmonic force amplitude
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(b) First harmonic force phase
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(c) Second harmonic force amplitude
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(d) Second harmonic force phase
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(e) Third harmonic force amplitude
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(f) Third harmonic force phase
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(g) Fourth harmonic force amplitude
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(h) Fourth harmonic force phase

Figure 2: Comparison of the �rst to fourth harmonics of horizontal forces on vertical circular cylinder in regular waves
with kR=0.245.

5 Discussion and future work

Results from both fully nonlinear models of Ferrant (1998) and Shao & Faltinsen (2014) are in good agreement for all the
components, and close to experimental results.

The numerical results obtained by the SWENSE method are in good agreement with the experimental data, especially
for the �rst and second harmonic components. For third and fourth harmonic components, slight di�erences are observed
between potential �ow and viscous �ow results, although the agreement with experiments is similar. Results from M&M's
theory, asymptotically valid in the zero steepness limit for an inviscid �uid are indicated by the bold dashed lines. We
observe that the three sets of nonlinear numerical results converge to these limit values when the wave amplitude decreases.
When the amplitude is increased, potential �ow solvers have di�culties in simulating cases above ka=0.13-0.15, due to
instabilities at the free surface, while the viscous �ow solver, although base on a free surface tracking scheme, is able to
cover the whole amplitude range, up to ka=0.24.

In Fig.2a (�rst harmonic amplitude), we can observe that above ka=0.1, potential �ow results tend to deviate from
experimental results, while results obtained with the viscous �ow solver, although showing a slight deviation, tend to
remain closer to the experiments. The analysis of the pressure and friction terms in the �uid load show that the friction
term remains negligible, and then that the source of the di�erence between potential �ow and viscous �ow solution appears
mainly through the pressure. A possible explanation lies in �ow separation initiated by viscous e�ects in the boundary
layer, as exempli�ed by Fig.3 showing small separated �ow areas appearing downwave when a crest is passing, and upwave
in the troughs.



We are now running convergence tests in order to be able to con�rm this analysis. Full results will be presented at
the workshop.

(a) t=8.5T (b) t=9T

Figure 3: Flow separation on the cylinder for wave steepness ka = 0.24. The velocity vector �eld is plotted on the free
surface. (a) In wave trough, zoom in on the upstream side of the cylinder. (b) In wave crest, zoom in on the downstream
side of the cylinder.
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