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HIGHLIGHTS 

A numerical wave tank (NWT) based on potential flow of incompressible liquid is developed to study nonlinear 

wave-body interactions in two dimensions. The NWT uses an efficient field method with high accuracy to solve 

the Laplace equation together with the concepts of immersed boundary method (IBM) and overlapping grids. 

1 THE NUMERICAL METHOD 

The harmonic polynomial cell (HPC) method is adopted to represent the velocity potential in the fluid. This was 

proposed by Shao & Faltinsen (2012, 2014) as an accurate and efficient numerical method to solve the Laplace 

equation in two or three dimensions. In 2D, the computational domain is discretized by quadrilateral, overlapping 

cells with eight nodes 𝑖 = 1,… ,8 along the edges and one interior node 𝑖 = 9. The velocity potential inside each 

cell is represented as a sum of harmonic polynomials with undetermined coefficients, i.e.  

𝜑(𝑥, 𝑧) = ∑ ∑ 𝑐𝑗,𝑖𝑓𝑗(𝑥, 𝑧)8
𝑗=1

8
𝑖=1 𝜑𝑖. (1) 

The fluid velocity inside a cell is obtained through spatial differentiation of Eq. (1). All harmonic polynomials up 

to third order and one fourth-order are included, resulting in a spatial accuracy of 𝜑 between third and fourth order. 

𝑓𝑗 is either the real or imaginary part of the 𝑗𝑡ℎ order harmonic polynomial and  𝑐𝑗,𝑖 is an entry of the inverse of 

the matrix [𝐷] with elements 𝑑𝑖,𝑗 = 𝑓𝑗(𝑥𝑖, 𝑧𝑖). (𝑥, 𝑧) are the local coordinates in the cell’s coordinate system with 

origin located in the interior node. At the cell origin, the only non-zero contribution to Eq. (1) is 𝑓1 = 1 which 

gives the connectivity equation that populates the majority of the global coefficient matrix in the boundary value 

problem (BVP) for the velocity potential. 

In the original HPC papers by Shao & Faltinsen, boundary-fitted grids are used at the body and free surface. In the 

present work, it is found beneficial to work with structured grids that do not deform in time because the accuracy 

in the HPC method is optimized when using square or close-to square grids. Furthermore, the grid generation is 

straightforward, and the coefficients 𝑐𝑗,𝑖 in Eq. (1) can be precomputed once at the start of the simulation. The 

latter saves CPU time. An immersed boundary method (IBM) is used to account for surfaces with various 

geometries in the non-deforming grid. Moreover, to allow non-stretched and non-distorted refined grids near a 

body and to better handle boundary conditions on moving bodies (including a wavemaker), an overlapping-grid 

approach is developed. The scenario is illustrated in Fig. 1 for a rounded square. To the left is shown a structured 

background grid with the outline of an overlapping body-fixed grid that follows the motion of the body indicated. 

The body-fixed coordinate system 𝑂(𝑥∗, 𝑧∗) is initially parallel to the Earth-fixed coordinate system 𝑂(𝑥, 𝑧). To 

the right the same scenario is viewed from the body-fixed reference frame, where also the distribution of free-

surface markers (+) is indicated. In both grids, the free surface is treated as an immersed boundary where the 

Dirichlet condition for the velocity potential at any time step is imposed directly by applying Eq. (1) in cells with 

nodes marked with □ along the upper edge. Similarly, the zero-flux body-boundary Neumann condition is imposed 

by applying the normal derivative of Eq. (1) directly in the grey-shaded ghost cells in the body-fixed reference 

frame. The nodes marked with black diamonds ⧫ are ghost nodes associated with these ghost cells. The transparent 

diamonds ◊ indicate nodes where the velocity potential is communicated between the two grids. The potential in 
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the background grid is interpolated from the body-fixed grid by direct application of Eq. (1) and vice versa. The 

remaining nodes, indicated by open circles ○, are inactive and removed from the global BVP. 

          
Fig. 1 Left: Background grid seen from the Earth-fixed reference frame. Right: Corresponding body-fixed grid (whose 

boundary is in red in the left panel) seen from the body-fixed reference frame. 

In the Earth-fixed background grid, semi-Lagrangian markers, restricted to move in vertical direction, are used to 

track the free surface and to enforce its kinematic boundary condition. In the body-fixed grid, the markers at the 

free surface-body intersections (FSBIs) are fully Lagrangian to allow for a non-wall sided body geometry. The 

velocity component in 𝑥∗-direction of the other markers is enforced to decrease linearly towards zero going far 

away, so that at a distance away from FSBIs the markers are restricted to move purely in 𝑧∗-direction. The body-

fixed reference frame is in general non-inertial and the time derivative of the velocity potential in Bernoulli’s 

equation must be rewritten as (Faltinsen & Timokha, 2009): 

Here 𝑢⃗ 𝑟
∗ = (𝑢𝑟

∗ , 𝑤𝑟
∗) is the velocity relative to the Earth-fixed reference frame of the point in the body-fixed grid 

where the time derivative is taken. The symbol * indicates that the quantity is resolved along the axes of the 

𝑂(𝑥∗, 𝑧∗) system. Through the markers, also the dynamic free-surface boundary condition for the continuity of the 

pressure is enforced. The free surface and its potential are evolved forward in time by a standard fourth-order 

Runge-Kutta scheme. 

The hydrodynamic loads induced on a structure by the wave-body interactions are obtained by integrating the total 

fluid pressure 𝑝 on the wetted surface. 𝑝 comes from Bernoulli’s equation where the acceleration potential 𝜑𝑡 =

𝜕𝜑 𝜕𝑡⁄  is found by solving a separate BVP that shares the same coefficient matrix as the BVP for 𝜑. In this BVP, 

a convective term due to Eq. (2) occurs in the right-hand side for the body-boundary condition in the body-fixed 

reference frame as well as in the coupling between the background and body-fixed grids with gradients of the 

potential computed from the spatial derivative of Eq. (1).  

In the following, an application involving important nonlinear features and a non-wall sided moving body is 

discussed. The details of the method and other test cases, including steep-wave generation and incident wave-body 

interaction, will be presented at the Workshop. These features are relevant to assess the solver applicability for the 

final aim of the present research, which is for the analysis of moored structures in severe weather conditions.  

2 EXAMPLE OF APPLICATION: HEAVING OF A SEMI-SUBMERGED CYLINDER 

Sun (2007) used a boundary element method (BEM) to study forced harmonic heave oscillations of a cylinder with 

radius 𝑅 = 0.1𝑚 in still water at non-dimensional heave amplitude 𝜖 = 𝑧𝐴 𝑅⁄ = 0.2. The same cases are simulated 

with the present method using the parameters in Table 1, which correspond to converged numerical results.  

𝜕 𝜕𝑡⁄ |𝑛𝑜𝑛−𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 = 𝜕 𝜕𝑡⁄ |𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 + 𝑢⃗ 𝑟
∗ ∙ ∇∗. (2) 
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Table 1 Numerical cases for heaving cylinder in still water. 

𝜔2𝑅 𝑔⁄  𝜆′ (𝑚) 𝑙 (𝑚) ℎ (𝑚) 𝑙𝑥
𝑏𝑓

 (𝑚) 𝑙𝑧
𝑏𝑓

 (𝑚) Δ𝑥𝑏𝑔(𝑚) Δ𝑥𝑏𝑓 (𝑚) Δ𝑡 𝑇 Δ𝑡⁄  

0.20 3.15 31.47 1.50 2.00 2.00 0.176 0.017 0.0258 55 

0.40 1.56 15.62 1.50 1.00 1.00 0.087 0.014 0.0143 70 

0.60 1.05 10.53 1.50 0.85 0.85 0.059 0.013 0.0097 85 

0.80 0.79 7.90 1.50 0.70 0.70 0.044 0.012 0.0084 85 

1.01 0.62 6.19 1.50 0.60 0.60 0.035 0.012 0.0042 150 

1.19 0.53 5.29 1.50 0.50 0.50 0.030 0.012 0.0039 150 

1.38 0.46 4.56 1.50 0.50 0.50 0.025 0.011 0.0027 200 

1.61 0.39 3.90 1.50 0.50 0.50 0.022 0.011 0.0025 200 

Here 𝜔2𝑅 𝑔⁄  is the non-dimensional square of the heave frequency with 𝑔 the acceleration of gravity, 𝑙 and ℎ are 

the length of the numerical domain and the water depth, 𝑙𝑥
𝑏𝑓

 and 𝑙𝑧
𝑏𝑓

 are the dimensions of the body-fixed grid, 

Δ𝑥𝑏𝑔 = Δ𝑧𝑏𝑔 is the uniform node spacing in the background grid, Δ𝑥𝑏𝑓 = Δ𝑧𝑏𝑓 is the uniform grid spacing in the 

body-fixed grid and Δ𝑡 is the time step. 𝑇 = 2𝜋 𝜔⁄  is the oscillation period and 𝜆′ is the wavelength estimated 

from the linear deep-water dispersion relation. The tank length is set equal to 10𝜆′ with the cylinder in the center 

and the water depth is taken as 15𝑅. A numerical damping zone with length 2𝜆′ is used at the domain edges. From 

Table 1, the background grid is significantly coarser than the body-fixed grid with ratio Δ𝑥𝑏𝑔 Δ𝑥𝑏𝑓⁄  ranging from 

10 for the lowest frequency to 2 for the highest frequency. This is an advantageous feature of using overlapping 

grids. 

A Fourier analysis is performed on the time history of the pressure force to determine the heave added mass 𝐴33, 

heave potential damping 𝐵33, second-order harmonic heave force amplitude 𝐹𝑧,𝑎2 and mean second-order heave 

force 𝐹𝑧,2
(0)

. They are presented in Fig. 2 in non-dimensional form where the mass density of the liquid is 𝜌 and 

𝑆0 = 0.5𝜋𝑅2 is the mean submerged area of the cylinder. ‘Sun (2007)’ are Sun’s nonlinear BEM results while 

‘HPC’ indicates the solution from the present method. ’lin’ are results from a linear theory and ‘exp’ are 

experimental results, both by Tasai & Koterayama (1976). 

   
Fig. 2 Heave added mass and damping coefficients (left) and second-order heave force coefficients (right) for semi-

submerged heaving cylinder. 

The uncertainty bound of the experimental results is unknown. Nevertheless, the agreement is globally good with 

some minor differences in 𝐹𝑧,2
(0)

. These can possibly be due to small differences in the flow near the FSBIs, or due 

to details of the Fourier analysis. The high-frequency cases in Table 1 require small time steps because large 

surface curvatures develop near the FSBIs. In order to make the simulations stable, a jet-cutting scheme is 

introduced when the angle between the free surface and cylinder surface estimated from the wave slope and body 

curvature becomes less than 5.0 degrees. With this criterion, the simulations are stable. Fig. 3 shows that the 
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surface elevation with the present method remains in close agreement with the nonlinear BEM results of Sun 

(2007) until the end of the examined simulation (𝜔2𝑅 𝑔⁄ = 1.61). 

           

           
Fig. 3 Surface elevation from present method (+) and from nonlinear BEM by Sun (2007) (-). Here 𝒕 is time. 

3 CONCLUSIONS 

The continuous representation of the velocity and acceleration potentials and fluid velocities in the HPC method 

leads to a straightforward implementation of boundary conditions and evaluation of fluid pressures on wetted 

surfaces in an IBM. It also facilitates coupling between overlapping grids. Shao & Faltinsen (2012) demonstrated 

that the HPC method can perform significantly faster than many other alternative methods, and the coupling 

between grids in the present method does not seem to affect the CPU speed significantly. A heaving cylinder is 

used as a case study to demonstrate how a dense body-fixed grid can be used to refine the flow features close to a 

body, with a coarser background grid in the majority of the domain. This represents a general framework to make 

efficient simulations without loss of accuracy, and is also relevant in 3D or for other applications involving the 

Laplace equation such as the homogenous solution of the Poisson equation in an incompressible-flow Navier 

Stokes solver. In the latter case, the overlapping-grid approach will also be applicable in a domain decomposition 

strategy. 
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