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1 INTRODUCTION

The finite-depth Direct Matrix Method interaction theory (IT) proposed by Kagemoto and Yue (1986)
enables one to solve the multiple-scattering problem efficiently for large arrays of identical floating
bodies. For that, two hydrodynamic operators known as Diffraction Transfer Matrix (DTM) and
Radiation Characteristics (RC) which model the way a body scatters and radiates waves respectively
were introduced.

The IT has been used in various contexts, such as hydrodynamic interactions between vessels
(Chakrabarti, 2001), large fields of ice floes in the marginal ice zone (Peter and Meylan, 2004) and
very large floating structures (Kashiwagi, 2000). McNatt et al. (2015) applied it to study large arrays
of wave energy converters. They derived a novel method to compute the DTM and introduced an
operator called Force Transfer Matrix (FTM) to facilitate the calculation of the forces exerted on the
bodies.

In this paper, a novel set of relations linking the FTM to the RC components is obtained and
numerically checked. They extend the classical Haskind’s relations valid with incident plane waves to
the cylindrical components of the scattered and radiated fields.

2 CYLINDRICAL WAVE FIELDS

One of the main pillars of the IT proposed by Kagemoto and Yue (1986) is that any diffracted or
radiated wave field can be represented using a basis of cylindrical eigenfunctions. These functions,
generally referred to as partial cylindrical waves, can be defined with respect to a local cylindrical
reference system centered at the body. This series expansion is the sum of progressive waves, related
to the far-field behaviour and evanescent standing waves, in the near-field. Only the former will be
considered hereafter. In this base of cylindrical functions the different forms of the far-field potential,
i.e. incident, scattered and radiated follow as:

φIi (ri, θi, z) = f(z) ΛI(ri, θi); φR,ki (ri, θi, z) = f(z) ΛR,k(ri, θi); φSi (ri, θi, z) = f(z) ΛS(ri, θi) (1)

f(z) =
cosh k0(z + d)

cosh k0d
; ΛI(r, θ) =

∞∑
m=−∞

(aIi )m Jm(k0r) e
imθ (2)

ΛR,k(r, θ) =

∞∑
m=−∞

(Rki )mHm(k0r) e
imθ; ΛS(r, θ) =

∞∑
m=−∞

(Ai)mHm(k0r) e
imθ (3)

where φIi is the incident potential to body i, φR,ki the radiated potential due to a motion of body i
in a degree of freedom k when all the other bodies are held fixed, φSi the scattered potential, k0 the
progressive wave number, Hm(k0r) the Hankel function of order m, Jm(k0r) the Bessel function of
the first kind of order m, d the depth and (aIi )m, (Rki )m and (Ai)m the mth components of the partial
wave cylindrical coefficients vector of the incident, radiated and scattered potentials respectively.

2.1 Isolated body

The excitation force (F kex) can be computed from incident and radiated potentials only using Haskind’s
relation (Newman, 1962):

F kex = iωρ

∫
Sb

(
φI
∂φR,k

∂n
− φR,k ∂φ

I

∂n

)
dS =

∞∑
m=−∞

Gk
ma

I
m (4)
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Figure 1: (a) Schematic of the fluid domains. Free surface (SL); body’s wetted surface (Sb); body’s cir-
cumscribing cylinder radius (Rc); cylindrical surface infinitesimally larger than the body’s circumscribing
cylinder (Sεc), seabed (F ); limit of the domain at infinity (S∞); (b) Schematic of a 4 cylinder array.

where Gk
m corresponds to the mth element of the kth row of the FTM and aIm represents the mth term

of the ambient incident wave cylindrical coefficients vector.
The expressions of the incident, scattered and radiated potentials using the base of partial cylin-

drical wave functions are valid only outside the circumscribing cylinder of the body (Ωout). Thus, and
by means of Green’s theorem, we express the surface integral in expression (4) on a cylindrical control
surface (Sεc) infinitesimally larger than the body’s circumscribing cylinder (Figure 1):∫
Sb

(
φI
∂φR,k

∂n
− φR,k ∂φ

I

∂n

)
dS = −

∫
Sεc

(
φI
∂φR,k

∂n
− φR,k ∂φ

I

∂n

)
dS (5)

where it has been implicitly used that the contribution from the integrals on the free surface and the
seabed are zero.

By substituting the expressions of the incident and radiated potentials (1) into (4), with the surface
integral over Sεc evaluated using Bessel and Hankel identities, the latter becomes:

Gk
m = 4

ρcgω
2

gk0
(−1)mRk−m (6)

where cg is the group velocity.
Figure 2 shows the progressive terms of the FTM in surge (G1

m) for a floating vertical cylinder
computed both by means of the BEM code NEMOH using its new capability to solve the diffrac-
tion problem for partial cylindrical waves and by means of the RC (computed with the same solver
implementing the methodology by Goo and Yoshida (1990)), using the identity (6). The excellent
agreement between the two calculation approaches provides a first numerical check of the extended
Haskind’s relation (6).

2.2 Array

The Haskind’s relation can be generalized for an array composed of Nb bodies (Falnes, 1980):

F kiex,i = −iρω
∫
S∞

(
φI
∂ΦR,ki

i

∂n
− ΦR,ki

i

∂φI

∂n

)
dS (7)

where ΦR,ki
i is the potential of a wave radiated by body i in a mode of motion ki and scattered by all

the neighbouring bodies j at rest.
The representation of the incident and radiated potentials in expression (7) relating the excitation

force with the far-field potentials follows as in (1). However, as the body is no longer in isolation,
the radiated potential of a body i moving in mode of motion ki can be written as a sum of two
contributions:

ΦR,ki
i = φR,kii +

Nb∑
j=1

φS,kij (8)
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Figure 2: Real (a) and Imaginary (b) parts of the FTM progressive terms in the surge (k=1) degree of
freedom for a cylinder of radius a, draft (d − h = 2a) in a water depth (d = 4a). The solid line (direct)
corresponds to the direct calculation of the FTM using NEMOH. The dotted line (indirect) is calculated
from the RC computed with our BEM solver and by using the right-hand side of equation (6).

where ΦR,ki
i is the total radiated potential, φR,kii is the radiated potential by body i in motion mode

ki as if it was isolated and φS,kij is the scattered potential by a body j in the array due to the wave
radiated by body i moving in mode of motion ki.

As the potentials are expressed with respect to the local cylindrical reference system centered at
each body, we apply a coordinate transformation to express all potentials with respect to the local
reference system of body i. We make use of the multipole expansion matrix Mij from Graff’s addition
theorem which expresses the scattered potential of body i around the origin of the jth coordinate
system (Kashiwagi, 2000):

ΥS
i (ri, θi) = Mij ΥS

j (rj , θj) with (Mij)
mq
nn = Jm−q(k0Lij) e

i(m−q)αij ; n = 0 (9)

where ΥS = Hm(k0r) e
imθ.

By applying (9) and using (1), equation (8) can be expressed as:

ΦR,ki
i (ri, θi, zi) = f(z)

∞∑
m=−∞

(Rkii )mHm(k0ri)e
imθi with (Rkii )m =

(
Rkii +

Nb∑
j=1

[Mji]
T Akij

)
m

(10)

where Rkii is the vector of cylindrical coefficients expressing the radiated wave by body i in a motion
mode k and including all the scattered waves by all the bodies in the array.

Finally, expression (7) is evaluated as:

F kiex,i =

∞∑
m=−∞

(
Gki
m + G̃ki

m

)
aI,im with G̃ki

m = 4
ρcgω

2

gk0
(−1)m

( Nb∑
j=1

[Mji]
T Akij

)
m

(11)

Figure 3 shows the variation of the excitation force with wave number in surge and heave for
cylinders 1-2 in the array shown in Figure 1b and for an incident wave propagating with β = π/4
direction. Results obtained by Siddorn and Eatock Taylor (2008) are shown and compared to our
two different computations. The first one using relationship (11) and the second one with a direct IT
calculation whose hydrodynamic operators have been obtained using NEMOH. A very good match
between them is found with a slight overestimation of the peaks for surge, mainly at low wave numbers
(ka < 1). By means of expression (11), the separate contribution from the isolated body and the
hydrodynamic interactions to the total excitation force have been computed and are also shown in
the plot. Only the absolute value is displayed here, so the curves cannot be directly summed. A
near-trapped mode at ka = 1.66 can be observed.
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Figure 3: Non-dimensional excitation forces in Surge (a) and Heave (b) for the cylinders 1-2 in the array
shown in Figure 1b from an incident plane wave with propagation direction (β = π/4) and amplitude
A . The solid line reproduces the results by Siddorn and Eatock Taylor (2008); the dotted green line
has been computed with the IT by Kagemoto and Yue (1986) using NEMOH to compute the required
hydrodynamic operators and the dotted blue line by means of (11). The black dotted lines (− · −·) and
(· · ··) correspond respectively to the contribution to the total excitation force from the isolated body and
from the hydrodynamic interactions with the neighbours.

3 CONCLUSIONS

By applying the Haskind’s relation to the representation of the potential using cylindrical harmonics
we were able to derive a new simple relationship between the Force Transfer Matrix and the Radiation
Characteristics that we have called extended Haskind relation. This removes the need to solve any
radiation problem, with the solution to the diffraction problem being known from the computation of
the DTM, and the numerical integration of the source strengths over the wetted surface of the body
to calculate the RC as required by the methodology of Goo and Yoshida (1990). In addition, we
extended the identity for the case of arrays and provided an expression which can be used to validate
an implementation of the interaction theory by Kagemoto and Yue (1986).
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