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1 HIGHLIGHTS
The wave di�raction-radiation problem of a porous geometry of arbitrary shape is obtained by
a set of integral equations. The e�ects of quadratic and linear resistance laws are compared.
The linear forces and the mean drift force are obtained mathematically and visualized by
computations.

2 INTRODUCTION
The motivation for the present analysis of wave-interaction including porous structures is gen-
erally fundamental. The structures are proposed for industrial applications. In the �sh farming
industry porous or slotted geometries may serve as �sh cages. Wave interaction with porous
screens where studied by Molin (2011) from an analytical view-point assuming a quadratic
relation between the pressure drop over the surface and the �ow-through velocity. The theory
was applied to model tuned liquid dampers used for protection of o�shore structures and for
damping of eigenfrequency-behaviour of slender structures such as skyscrapers. The model
was used for experimental comparison in Molin & Remy (2013). A linear pressure-velocity
relation was investigated by Chwang (1983) with application to porous wavemakers as model
of landslides and leakage in wavemakers. Zhao et al. (2011) developed various hydrodynamic
identities with a linear porous pressure-velocity law. They also investigated the drift-force due
to di�raction.

The goal of our study has been a thorough comparison of the linear and quadratic porosity
laws in the wave and arbitrary body case as this, to our knowledge has not been investigated
before.

3 DESCRIPTION OF THE SPECIFIC PROBLEM
We consider a porous geometry located at the surface of the �uid. Periodic motion with
frequency ω is assumed. Incoming plane progressive waves have amplitude A, wavenumber
k = ω2/g and wave angle β where g is the acceleration of gravity. A coordinate system is
de�ned where x, y spans the horisontal plane and z is the vertical direction, with the �uid
surface at z = 0. The water depth is in�nite. We assume that the body moves in the six rigid
modes of motion, with amplitudes denoted by ξj, j = 1, . . . , 6. The motion is decomposed into
two parts, one for the �uid inside the porous body and one for the surrounding �uid. The
exterior/inner velocity potential reads

ΦE/I = Re
{(
iφ
E/I
D gA/ω + iω

∑
6
j=1ξjφ

E/I
j

)
eiωt
}
, (1)

where φ
E/I
D = φ0+φ

E/I
7 is the sum of the incoming velocity potential φ0 given by ekz−ikR cos(β−θ),

where x = R cos θ, y = R sin θ. The scattering potential is denoted by φ
E/I
7 , and φ

E/I
j denotes

the radiation potentials.

From now on we will use the notation Φ
E/I
j for the radiation part, while Φ

E/I
D is the di�raction

part of Eq.(1). The linearized free surface condition reads ∂φ
E/I
j /∂z − kφ

E/I
j = 0, z =

0, j = 0, . . . , 7. In the far �eld the exterior potentials must satisfy the radiation condtion
φEj ∝ R−

1
2 e−ikR, R → ∞, j = 1, . . . , 7. For non-porous bodies the normal velocity of the

�uid is equal to the normal velocity of the body Uj = Re (iωξje
iωt). In the porous case we have

an extra term, which is the �ow-through velocity, giving
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∂n
= WD,n, (2)

where Wj,n and WD,n are speci�ed in the next section.
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4 THE RESISTANCE LAW AT THE POROUS GEOMETRY

We model a porous geometry by representing it as a thin structure which allows �uid �ow
through its surface. It is common to model the �ow-through velocity (Wn) as a function of
the pressure drop (∆p) over the porous material; Wn = Wn(∆p). Taylor (1956) described
linear and quadratic laws which coupled the �ow-through velocity and the pressure di�erence.
Chwang (1983) described a porous wavemaker with a linear resistance law. The quadratic law
presented by Molin (2011) includes separation e�ects. The equation is on the form

∆p = pE − pI =
1− τ
2µ0τ 2

ρWn|Wn| =
1

2
ρC0Wn|Wn|, (3)

where τ is the open area ratio in the range from 0 to 1, µ0 is a discharge coe�cient of order
1 and C0 = (1 − τ)/(µ0τ

2). For reference we shall compare to calculations using also a linear
resistance law. This law is only suitable for structures with very �ne pores and does not account
for separation of �ow through the pores. The model applies Darcy's law and reads

Wn = (b/µ)∆p, (4)

where µ is the viscosity and b is a porosity parameter with dimension length.

4.1 Di�raction Problem

Having assumed a periodic motion we have, in the di�raction problem

WD,n = Re(iωAwD,ne
iωt) = Aω|wD,n| cos τ, (5)

where wD,n = |wD,n|eiδ is a dimensionless �ow-through velocity and τ = ωt + δ. By use of
equivalent linearization we have

|WD,n|WD,n = A2ω2|wD,n|| cos τ | cos τ ∼= (8/3π)Aω|wD,n|WD,n, (6)

where | cos τ | cos τ | = (8/3π) cos τ + (8/15π) cos(3τ) + . . . ∼= (8/3π) cos τ is a truncation of the
Fourier series such that the performed work or energy loss is conserved.

By applying the linearized Euler equation for the pressure jump we obtain

∆p = −ρ∂/∂t(ΦE
D − ΦI

D) = −ρRe(igA(φED − φID)eiωt). (7)

This gives the following condition for the quadratic resistance law

wD,n = −i3π
4

1

C0

1

kA|wD,n|
(φED − φID). (8)

For the linear law using the linearized Euler equation, we �nd

wD,n = −ρiωb
µ

(φED − φID). (9)

A similar procedure can be applied to the radiation problem obtaining an expression for the
�ow-through velocity.
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Fig. 1: Sketch of porous geometry. Symbols de�ned in the text.

5 INTEGRAL EQUATIONS FOR THE COUPLED SYSTEM

By using the Green's theorem a coupled set of equations for the inner and outer velocity
potential is obtained. As Green function we use

G(x, y, z; ξ, η, ζ) =
1

r
+

1

r′
+ 2k

∫ ∞
0

ek(z+ζ)

l − k
J0(lR

′)dl, (10)
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where J0 is the Bessel function of the �rst kind and order zero, the integration is above the
pole, r2 = (x− ξ)2 + (y − η)2 + (z − ζ)2, r′2 = (x− ξ)2 + (y − η)2 + (z + ζ)2 and
R′2 = (x− ξ)2 + (y − η)2. By subtraction and addition of the equation for the inner and outer
potentials, we �nd for the �eld point on the porous geometry Sb

2πφD +

∫∫
Sb

ψDGndS = 4πφ0, 2πψD +

∫∫
Sb

φDGndS − 2iαD

∫∫
Sb

ψDGdS = 4πφ0, (11)

where

αD =

{
− 3π

4C0A|wD,n|
for a quadratic resistance law

−ρbω
µ

for a linear resistance law,
(12)

φD = 2φ0 + φE7 + φI7, ψD = φE7 − φI7. (13)

In Eq.(12) in the quadratic case the variable |wD,n| is unknown. We obtain numerical solution
by using Picard iteration with a relaxation factor of 0.5, where wD,n is expressed in Eq.(8). Both
the linear and quadratic case have been solved with software described in the next section. The
solution of the integral equations for a solid geometry is the special case when αD = 0, where
there is no coupling e�ect between the inner and outer velocity potentials.

6 IMPLEMENTATION, VERIFICATION AND RESULTS

To solve the coupled integral equations, we have used WAMIT 5.3 modi�ed for wave-current-
body interaction by the University of Oslo. There has been done some major modi�cations to
this software, due to the porous resistance laws. One of these modi�cations is to migrate the
solver to Python. This was done due to instabilities in the original solver when obtaining the
di�raction−radiation problem with a quadratic resistance law. The calculations of coe�cients
for added mass and damping, Haskind-relations, energy-dissipation and drift force have been
modi�ed to include the porous boundary condition. Convergence of the nonlinear solver is
obtained when the maximum di�erence of the �ow velocity on all of the panels are less than
10−5 from one iteration to another.

To verify our set of equations we started by computing added mass and damping coe�cients
for solid geometries and compared the results with analytical solutions. For veri�cation of the
nonlinear porous case we computed the added mass and damping of a sphere in unbounded
�uid with excellent comparison to Molin (2011) (Dokken 2016, Fig 6.4).

The linear exciting force is expressed by F ex
j = Re(ρgAXje

iωt). For verifying the relation
between the radiation and di�raction problem we reexamined the Haskind relation, which is
slighty modi�ed by adding porous e�ects, where

Xj =

∫∫
Sb

(φED − φID)njdS = Hj(β + π)−
∫∫

Sb

i(φEj − φIj )(φE7 − φI7)(αj − αD)dS, (14)

where αj = −3π/(4C0ξj|wj,n|) and αD is given in Eq. (12) and Hj is the Kochin function with
porous boundary conditions. This relation is di�erent in the linear case, where αj = αD and
the only di�erence between linear porosity and the usual Haskind relation (αD = αj = 0) is
the porous boundary condition included in the Kochin function. For further veri�cation we
compared the far �eld energy �ux with the energy dissipation at the body. All derivations and
veri�cations of these identities are available in Dokken (2016). In Zhao et al. (2011) the mean
horisontal drift force for the di�raction problem including linear porous e�ects was derived.
This was rexamined in Dokken et al. (2017) including linear porous e�ects, while in Dokken
(2016) derivations of the drift force including quadratic e�ects appear. The mean drift force in
the di�raction problem in x-direction can be expressed as
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for both the linear and quadratic resistance law. The αD is di�erent for the two laws.

Computations for a hemisphere located at the free surface obtain the linear exciting forces
X1 and the mean drift force F̄1 as a function of the porosity, see Figure 2. Here the dots is
computations of the the body integral of Xj and the lines are the RHS of Eq. (14). We observe
the expected matching of these two computations. Observe that even the scaled exciting force
on the solid body is larger than the exciting force for both the linear and quadratic resistance
law for all wavenumbers.

We observe that F̄1 rapidly decreases with the shorter waves in the case of the quadratic law as
compared to the linear law. This can be explained by the porosity factor αD. By keeping the
wave steepnes kA constant, an increase in kR would mean a proportional decrease in A, and
a similar increase in αD. This means that shorter waves have the same e�ect as increasing the
porosity. We also observe that for short waves the drift force in the solid case is more than 4
times as large as in the porous cases. We observe that for long waves, the mean drift force in
the case of the linear resistance law is signi�cantly larger than in the solid body case. This is
not the case with the quadratic law.

Fig. 2: a) Exiting force and b) Mean horisontal drift force as function of wavenumber.
Quadratic resistance law: τ = 0.5 ( ---- ---) and τ = 0.7 ( ---•---). Linear resistance law:√
gR0ρb/µ = 9.7 (-- --) and

√
gR0ρb/µ = 19.4 ( --•--). Force ×0.25 on solid geometry ( ------).
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