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1 INTRODUCTION 

We consider the linear problem of water waves scattering by 𝑁 vertical cylinders with non-circular 

cross sections extending from the sea bottom to the free surface in water of finite depth ℎ. It is 

assumed that a plane wavetrain incident from −∞ and propagating at an angle 𝛼 to the positive 𝑥-

direction towards the vertical cylinders whose cross sections are described by the equations, 𝑟𝑗 =

𝑅𝑗[1 + 𝜀𝑗𝑓𝑗(𝜃𝑗)], with 𝜀𝑗 ≪ 1,  𝑗 = 1,2, … , 𝑁. The functions  𝑓𝑗(𝜃𝑗) describes the deviation of the shape 

of the cylinder 𝑗 from the circular one with (𝑟𝑗, 𝜃𝑗) denoting the polar coordinates placed at the center 

of cylinder 𝑗. The problem of wave scattering by a nearly circular cylinder was formulated in (Mei et 

al., 2005) and a fifth-order asymptotic solution of the problem has been obtained for the cylinders 

with elliptic, quasi- elliptic, square cross sections and cylinders with cosine type radial perturbations 

by the authors. (Dişibüyük, Korobkin, Yilmaz, 2016). Several numerical methods are available for 

the calculation of diffraction by multiple cylinders and they are discussed by Mei (1978). For semi-

analytical solutions for interaction of vertical circular cylinders in an array see, Spring and 

Monkmeyer (1974), Ohkusu (1974), Kagemoto and Yue (1986), Linton and Evans (1990). The 

interaction of waves by arrays of elliptic cylinders are given by Chatjigeorgiou and Mavrakos, (2010).  

In this study, the asymptotic method for a single cylinder of arbitrary cross section (Dişibüyük, 

Korobkin, Yilmaz, 2016) and the iterative method for multiple circular cylinders (Yılmaz, 2004) are 

combined to solve the interaction problem for arbitrary number of cylinders with arbitrary cross 

sections. Wave forces acting on two elliptic cylinders are presented. 

2 MATHEMATICAL FORMULATION OF THE PROBLEM 

The linear boundary problem is formulated with respect to the velocity potential Φ(𝑟, 𝜃, 𝑧, 𝑡) 

Φ(𝑟, 𝜃, 𝑧, 𝑡) = 𝑅 {
𝑔𝐴

𝜔

cosh 𝑘(𝑧+ℎ)

cosh 𝑘ℎ
𝜙(𝑟, 𝜃)𝑒−𝑖𝜔𝑡}, 

where 𝜙 satisfies the Helmholtz equation (∇2 + 𝑘2)𝜙 = 0 in the flow region, 𝐴 is the incident wave 

amplitude, 𝑘 =
2𝜋

𝜆
 is the wave number, 𝜆 is the incident wave length, 𝜔 is the wave frequency related 

to the wave number 𝑘 by the dispersion relation 𝜔2 = 𝑔𝑘 tanh 𝑘ℎ, where 𝑔 is the gravitational 

acceleration. 𝑁 + 1 coordinate systems are used: (𝑟, 𝜃, 𝑧) with the origin at the free surface and the 

𝑧-axis upward and local coordinates (𝑟𝑗, 𝜃𝑗, 𝑧𝑗), 𝑗 = 1, … , 𝑁 centered at the origin of each cylinder 

(𝑥𝑗, 𝑦
𝑗
). 𝐿𝑗𝑖 is the distance between the center of the cylinder 𝑗 and 𝑖, (see Fig. 1).  
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Fig. 1: Basic configuration and coordinate systems. 

The basic idea of the interaction is that for each cylinder 𝑗, the waves arriving from other 

cylinders are treated as incident wave. Hence the total wave potential for cylinder 𝑗 is 

𝜙𝑗
(𝑝)

(𝑟𝑗, 𝜃𝑗) = ∑ [𝑣𝑗𝑚
(𝑝)

cos(𝑚𝜃𝑗) + �̃�𝑗𝑚
(𝑝)

sin(𝑚𝜃𝑗)] 𝐽𝑚(𝑘𝑟𝑗)

∞

𝑚=0

+ ∑ [𝑏𝑗𝑚
(𝑝)

cos(𝑚𝜃𝑗) + 𝑐𝑗𝑚
(𝑝)

sin(𝑚𝜃𝑗)] 𝐻𝑚
(1)

(𝑘𝑟𝑗),   𝑝 = 1,2, … ,   𝑗 = 1, … , 𝑁.

∞

𝑚=0

      (1) 

where 𝑝 defines the number of iteration and the first summation in (1) is the sum of the diffracted 

waves from other cylinders which are transformed to the coordinates (𝑟𝑗, 𝜃𝑗) by the addition theorem 

of Bessel functions and the incoming wave from infinity. The second summation in (1) represents the 

diffraction of the total incident wave from cylinder 𝑗. For the first iteration (𝑝 = 1) and the first 

cylinder (𝑗 = 1), 𝑣1𝑚
(1)

= 𝜖𝑚𝑖𝑚, �̃�1𝑚
(1)

= 0 where 𝜖𝑚 is the Neumann symbol, 𝜖0 = 1, 𝜖𝑚 = 2 for 𝑚 ≥

1. The unknown coefficients 𝑏𝑗𝑚
(𝑝)

, 𝑐𝑗𝑚
(𝑝)

 are found from the boundary condition: 

𝜕𝜙𝑗
(𝑝)

𝜕𝑛𝑗
= 0 on 𝑟𝑗 = 𝑅𝑗[1 + 𝜀𝑗𝑓𝑗(𝜃𝑗)],   𝑗 = 1, … , 𝑁. 

where 𝒏𝑗 is the unit normal vector on the cylinder 𝑗 and 𝜙𝑗 is the velocity potential in the local 

coordinates of cylinder 𝑗. This boundary condition can be written as 

𝜕𝜙𝑗
(𝑝)

𝜕𝑟𝑗
(𝑅𝑗[1 + 𝜀𝑗𝑓𝑗(𝜃𝑗)], 𝜃𝑗) −

𝜀𝑗𝑓𝑗
′(𝜃𝑗)

𝑅𝑗[1+𝜀𝑗𝑓𝑗(𝜃𝑗)]
2

𝜕𝜙𝑗
(𝑝)

𝜕𝜃𝑗
(𝑅𝑗[1 + 𝜀𝑗𝑓𝑗(𝜃𝑗)], 𝜃𝑗) = 0, 𝑗 = 1, … , 𝑁,  

   (2) 

where 0 < 𝜃𝑗 < 2𝜋. We approximate the boundary condition (2) up to 𝑂(𝜀5) using the Taylor 

expansions at 𝑟𝑗 = 𝑅𝑗 , 𝑗 = 1, … , 𝑁 and substituting the fifth order asymptotic expansion of the 

potential 𝜙𝑗 

𝜙𝑗
(𝑝)

(𝑟𝑗, 𝜃𝑗) = 𝜙𝑗0
(𝑝)

(𝑟𝑗, 𝜃𝑗) + 𝜀𝜙𝑗1
(𝑝)

(𝑟𝑗, 𝜃𝑗) + 𝜀2𝜙𝑗2
(𝑝)

(𝑟𝑗, 𝜃𝑗) + 𝜀3𝜙𝑗3
(𝑝)

(𝑟𝑗, 𝜃𝑗) + 𝜀4𝜙𝑗4
(𝑝)

(𝑟𝑗 , 𝜃𝑗) +

𝑂(𝜀5),                                                                                                                                                (3) 

into the boundary condition (2). We obtain 
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𝜙𝑗0
(𝑝)

(𝑅𝑗, 𝜃𝑗) = 0, 

𝜙𝑗1
(𝑝)

(𝑅𝑗 , 𝜃𝑗) =
1

𝑅𝑗
2 𝑓𝑗

′(𝜃𝑗)𝜙𝑗0,𝜃𝑗

(𝑝)
(𝑅𝑗 , 𝜃𝑗) − 𝑓𝑗(𝜃𝑗)𝜙𝑗0,𝑟𝑗𝑟𝑗

(𝑝)
(𝑅𝑗, 𝜃𝑗), 

at the order of 𝜀0 and 𝜀1 respectively. The boundary conditions for higher orders of 𝜀 (up to 𝜀5) are 

obtained similarly. It is clear that 𝜙𝑗0
(𝑝)

(𝑟𝑗, 𝜃𝑗) is the velocity potential of the diffraction problem for 

the circular cylinder 𝑟𝑗 = 𝑅𝑗 (see MacCamy and Fuchs, 1954). The most general representation of 

𝜙𝑗𝑛
(𝑝)

(𝑟𝑗, 𝜃𝑗), 𝑛 = 1,2,3,4 in (3), which satisfy the radiation condition at infinity, 𝜙𝑗𝑛
(𝑝)

→ 0 as 𝑟 → ∞, 

is 

𝜙𝑗𝑛
(𝑝)

(𝑟𝑗, 𝜃𝑗) = ∑ [𝐵𝑗𝑚𝑛
(𝑝)

cos[𝑚(𝜃𝑗 − 𝛼)] + 𝐶𝑗𝑚𝑛
(𝑝)

sin[𝑚(𝜃𝑗 − 𝛼)]]𝐻𝑚
(1)

(𝑘𝑟𝑗),    𝑗 = 1, … , 𝑁.  

∞

𝑚=0

 

By expanding in a Fourier series and using the boundary conditions (4), (5) and the other conditions 

corresponding to higher orders of 𝜀 the unknown coefficients 𝐵𝑗𝑚𝑛
(𝑝)

 and 𝐶𝑗𝑚𝑛
(𝑝)

, 𝑗 = 1, … , 𝑁, 𝑛 =

1,2,3,4, 𝑚 = 0,1,2, … are determined. 

Now, the unknown coefficients 𝑏𝑗𝑚
(𝑝)

 and 𝑐𝑗𝑚
(𝑝)

, 𝑚 = 0,1,2, …, , 𝑗 = 1, … , 𝑁  in (1) are given by 

𝑏𝑗𝑚
(𝑝)

= −𝑣𝑚𝑗
(𝑝) 𝐽𝑚

′ (𝑘𝑅𝑗)

𝐻𝑚
(1)′

(𝑘𝑅𝑗)
+ 𝜀𝐵𝑗𝑚1

(𝑝)
+ 𝜀2𝐵𝑗𝑚2

(𝑝)
+ 𝜀3𝐵𝑗𝑚3

(𝑝)
+ 𝜀4𝐵𝑗𝑚4

(𝑝)
,  

𝑐𝑗𝑚
(𝑝)

= −�̃�𝑚𝑗
(𝑝) 𝐽𝑚

′ (𝑘𝑅𝑗)

𝐻𝑚
(1)′

(𝑘𝑅𝑗)
+ 𝜀𝐶𝑗𝑚1

(𝑝)
+ 𝜀2𝐶𝑗𝑚2

(𝑝)
+ 𝜀3𝐶𝑗𝑚3

(𝑝)
+ 𝜀4𝐶𝑗𝑚4

(𝑝)
. 

This process of iteration is continued until the desired accuracy |𝜙𝑗
(𝑝+1)

− 𝜙𝑗
(𝑝)

| < 𝛿, where 𝛿 is a 

small number, 𝑗 = 1, … , 𝑁. 

The non-dimensional 𝑥𝑗 and 𝑦𝑗 components of the hydrodynamic force due to the fluid motion on 

the cylinder 𝑗 are given by 

�̃�𝑥𝑗
=

−𝑖𝑅𝑗 tanh(𝑘ℎ)

𝑘𝑎𝑗
2 ∫ 𝜙𝑗

(𝑝)
(𝑅𝑗[1 + 𝜀𝑗𝑓𝑗(𝜃𝑗)], 𝜃𝑗)[𝜀𝑗𝑓𝑗

′(𝜃𝑗) sin 𝜃𝑗 + [1 + 𝜀𝑗𝑓𝑗(𝜃𝑗)] cos 𝜃𝑗]𝑑𝜃𝑗 ,
2𝜋

0

 

�̃�𝑦𝑗
=

−𝑖𝑅 tanh(𝑘ℎ)

𝑘𝑎𝑗
2 ∫ 𝜙𝑗

(𝑝)
(𝑅𝑗[1 + 𝜀𝑗𝑓𝑗(𝜃𝑗)], 𝜃𝑗)[−𝜀𝑗𝑓𝑗

′(𝜃𝑗) cos 𝜃𝑗 + [1 + 𝜀𝑗𝑓𝑗(𝜃𝑗)] sin 𝜃𝑗]𝑑𝜃𝑗 .
2𝜋

0

 

𝑗 = 1, … , 𝑁, which are scaled by 𝜌𝑔𝐴𝑎𝑗
2, where 𝑎𝑗 is a characteristic dimension of the 𝑗-th cylinder 

cross section. 

3 RESULTS AND CONCLUSIONS 

As an example an arrangement of two eliptical cylinders is considered with the same 

dimensions as in the paper of (Chatjigeorgiou and Mavrakos, 2010). The semi-minor and semi-major 

axis of the elliptic cylinders are 𝑏 and 𝑎 respectively. The following ratios are used: 𝑏/𝑎 = 0.4, 

ℎ/𝑎 = 0.8 and 𝐿𝑗𝑖/𝑎 = 2. The center of the cylinders are at (0,0) and (0,2𝑎). The equation 𝑟𝑗 =

𝑎𝐹𝑗(𝜃𝑗), 𝑗 = 1,2 describe the ellipse in the polar coordinates (𝑟𝑗, 𝜃𝑗) whose origin is at its center, 
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where 𝐹𝑗(𝜃𝑗) = √1 − 𝑒2/(1 − 𝑒 cos 𝜃𝑗)2, 𝑒 = √1 − (𝑏2/𝑎2), 0 < 𝑒 < 1, is the eccentricity of the 

ellipse. The Fourier coefficients of the function 𝐹𝑗(𝜃𝑗), 0 ≤ 𝜃𝑗 ≤ 2𝜋, are determined and then 

converted to the corresponding Fourier series into the form 𝑟𝑗 = 𝑅𝑗[1 + 𝜀𝑗𝑓𝑗(𝜃𝑗)] identifying values of 

𝑅𝑗,  𝜀𝑗, and the function 𝑓𝑗(𝜃𝑗).   

 The asymptotic method for a single cylinder of arbitrary cross section (Dişibüyük, Korobkin, 

Yilmaz, 2016) and the iterative method for multiple circular cylinders (Yılmaz, 2004) are combined 

to solve the interaction problem for arbitrary number of cylinders with arbitrary cross sections. For 

the interaction of two elliptic cylinders, our results are compared with the results of Chatjigeorgiou 

and Mavrakos, (2010) who used the expansion of the exact expressions for the forces which are given 

by the Mathieu functions. The present asymptotic approach provides a good approximation for the 

forces exerted on the elliptic cylinders to the different incident wave values. (see Fig. 2). 

  

Fig. 2: The 𝒙-component of the non-dimensionlized force on elliptic cylinders for 𝜶 = 𝟎°. The solution by 

(Chatjigeorgiou and Mavrakos, 2010) for cylinders 𝟏 and 𝟐 (solid line), the present method with one iteration (𝒑 =

𝟏) for cylinder 𝟏 (• markers) and cylinder 𝟐 (∘ markers). Dashed line is solution for one elliptic cylinder by  

(Chatjigeorgiou and Mavrakos, 2010). 
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