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Further to the uniform asymptotic expansion of Fourier integral with large parameter and two nearly coinci-
dent saddle points presented at the workshop by Dai and Chen (2013), we have also obtained the higher-order
non-uniform asymptotic expansions, which can be regarded as the generalization of Kelvin and Peters’s re-
sult. The non-uniform asymptotic expansion gives important information about the physical behavior of
this Fourier integral in different regions. Uniform asymptotic expansions can be used as the basis of their
numerical approximations. Combination of these two results provides the complete solution to the problem
proposed by Lord Kelvin.

1 Basic formulations

The basis to develop non-uniform asymptotic expansion of an integral of Fourier type is given by Olver
(1974) :

∫

∞

0

uα−1eitudu = eiπα/2Γ(α)t−α (1)

with the real parameter t > 0 and complex α satisfying that ℜ(α) > 0.

By using (1) introduced above, we can have following identities :

∫

∞

−∞

um−1eixu
n

du =



















(2/n) exp(iΣπm/2n)Γ(m/n)|x|−m/n m odd and n even,

0 m even and n even,

(2/n) cos(Σπm/2n)Γ(m/n)|x|−m/n m odd and n odd,

i(2/n) sin(Σπm/2n)Γ(m/n)|x|−m/n m even and n odd,

(2)

in which x is real and Σ = sign(x), and m,n are positive integers.

Furthermore, we define a complex parameter z with ℑz > 0. By applying the Cauchy theorem, we have :
∫

∞

−∞

u2neizu
2

du = eiπ(2n+1)/4Γ(n+ 1/2)z−(n+1/2) (3)

where the phase z is comprised in (−π, π].

2 Higher-order asymptotic expansions

We consider the Fourier-type integral I(λ, θ) which is defined as :

I(λ, θ) =

∫ b

a

f(k)eiλϕ(k,θ)dk (4)

with a large parameter λ. In (4), the parameters λ and θ are real while the amplitude function f(k) and
phase function ϕ(k, θ) are real functions. Suppose that there exists a critical value of θc, two distinct real
saddle points k1 and k2 comprising in (a, b), i.e., a < k1 < k2 < b for θ < θc, and two complex conjugate
saddle points for θ > θc. As θ → θc, the two saddle points coincide at a single saddle point k = kc of order
2.

2.1 θ < θ
c

For large value of λ, the integral (4) can be approximated by the contribution near the saddle points

I(λ, θ) ≈ I1 + I2 (5)

with the contribution of integration in the vicinity of k1 and k2 approximated by :

I1 =

∫ k1+ǫ

k1−ǫ

f(k)eiλϕ(k,θ)dk, I2 =

∫ k2+ǫ

k2−ǫ

f(k)eiλϕ(k,θ)dk (6)



in which 0 < ǫ ≪ 1. The first integral can be further estimated by introducing the Taylor development of
the amplitude and phase functions :

I1 =

∫ k1+ǫ

k1−ǫ

[

f(k1) + f ′(k1)(k − k1) + f ′′(k1)(k − k1)
2/2

]

× exp
{

iλ
[

ϕ(k1, θ) + ϕ′′(k1, θ)(k − k1)
2/2 + ϕ′′′(k1, θ)(k − k1)

3/6 + ϕ′′′′(k1, θ)(k − k1)
4/24

]}

dk

≈
∫

∞

−∞

exp
{

iλ
[

ϕ(k1, θ) + ϕ′′(k1, θ)k
2/2

]}

×
{

f(k1) + f ′′(k1)k
2/2 + iλ[f ′(k1)ϕ

′′′(k1, θ)/6 + f(k1)ϕ
′′′′(k1, θ)/24]− λ2f(k1)[ϕ

′′′(k1, θ)]
2k6/72

}

dk

≈ f(k1) exp [iλϕ(k1, θ) + sgn(ϕ′′

1 )iπ/4]
√

2π/[λ|ϕ′′(k1, θ)|]

×
{

1 +
i

2λ

[

f ′′(k1)

f(k1)ϕ′′(k1, θ)
− ϕ′′′′(k1, θ)

4[ϕ′′(k1, θ)]2
− f ′(k1)ϕ

′′′(k1, θ)

f(k1)[ϕ′′(k1, θ)]2
+

5[ϕ′′′(k1, θ)]
2

12[ϕ′′(k1, θ)]3

]}

(7)

where sgn(ϕ′′

1 ) = ϕ′′(k1, θ)/|ϕ′′(k1, θ)|. The prime in above and hereafter denotes differentiation with respect
to k. In the same way, we can obtain the approximation of I2 so that

I(λ, θ) ≈
2

∑

j=1

f(kj) exp
[

iλϕ(kj , θ) + sgn(ϕ′′

j )iπ/4
]
√

2π/[λ|ϕ′′(k1, θ)|]

×
{

1 +
i

2λ

[

f ′′(kj)

f(kj)ϕ′′(kj , θ)
− ϕ′′′′(kj , θ)

4[ϕ′′(kj , θ)]2
− f ′(kj)ϕ

′′′(kj , θ)

f(kj)[ϕ′′(kj , θ)]2
+

5[ϕ′′′(kj , θ)]
2

12[ϕ′′(kj , θ)]3

]}

(8)

2.2 θ > θ
c

Two saddle points k1 and k2 are complex conjugate. Suppose that the imaginary part of ϕ(k1, θ) is positive.
The contribution from the saddle point k2 is then negligible comparing to that from the saddle point k1
which is obtained in the same way as (7) :

I(λ, θ) ≈ f(k1) exp [iλϕ(k1, θ) + iπ/4]
√

2π/[λϕ′′(k1, θ)]

×
{

1 +
i

2λ

[

f ′′(k1)

f(k1)ϕ′′(k1, θ)
− ϕ′′′′(k1, θ)

4[ϕ′′(k1, θ)]2
− f ′(k1)ϕ

′′′(k1, θ)

f(k1)[ϕ′′(k1, θ)]2
+

5[ϕ′′′(k1, θ)]
2

12[ϕ′′(k1, θ)]3

]}

(9)

Note that ϕ(k, θ) and its derivatives at k = k1 are complex for θ > θc, while they are real in the case when
θ < θc.

2.3 θ = θ
c

Two saddles points k1 and k2 coalesce at k = kc at which ϕ′(kc, θc) = 0 = ϕ′′(kc, θc). Then we have :

I(λ, θc) ≈
∫ kc+ǫ

kc−ǫ

[f(kc) + f ′(kc)(k − kc)]

exp
{

iλ
[

ϕ(kc, θc) + ϕ′′′(kc, θc)(k − kc)
3/6 + ϕ′′′′(kc, θc)(k − kc)

4/24
]}

dk

≈ f(kc) exp [iλϕ(kc, θc)]

∫

∞

−∞

exp
{

iλϕ′′′(kc, θc)k
3/6

}

[1 + iλϕ′′′′(kc, θc)/24]dk

+ f ′(kc) exp [iλϕ(kc, θc)]

∫

∞

−∞

exp
{

iλϕ′′′(kc, θc)k
3/6

}

k dk

=

√
3

3
f(kc) exp [iλϕ(kc, θc)]Γ(1/3)

[

6

λ|ϕ′′′(kc, θc)|

]1/3

(10)

×
{

1 + i sgn(ϕ′′′

c (kc, θc))
f ′(kc)Γ(2/3)

f(kc)Γ(1/3)

[

6

λ|ϕ′′′(kc, θc)|

]1/3

− i
ϕ′′′′(kc, θc)Γ(2/3)

361/3Γ(1/3)

[

1

λ|ϕ′′′(kc, θc)|4
]1/3

}

2.4 θ ≈ θ
c

When θ is sufficiently close to θc, k1,2 → kc and ϕ′′(k1,2, θ) → 0. In this case, (8) and (9) cannot give a
good asymptotic values of I(λ, θ). In fact, there exists a real value of k = ks 6= kc for θ ≈ θc defined by the
relation :

ϕ′′(ks, θ) = 0 (11)



Thus we can develop :

I(λ, θ) ≈
∫ ks+ǫ

ks−ǫ

[f(ks) + f ′(ks)(k − ks)]

exp
{

iλ
[

ϕ(ks, θ) + ϕ′(ks, θ)(k − ks) + ϕ′′′(ks, θ)(k − ks)
3/6 + ϕ′′′′(ks, θ)(k − ks)

4/24
]}

dk

= 2πf(ks) exp [iλϕ(ks, θ)]Ai(X)

[

2

λ|ϕ′′′(ks, θ)|

]1/3

(12)

− i2πsgn(ϕ′′′

s )f ′(ks) exp [iλϕ(ks, θ)]Ai
′(X)

[

2

λ|ϕ′′′(ks, θ)|

]2/3

+ iπλ[ϕ′′′′(ks, θ)/12]f(ks) exp [iλϕ(ks, θ)]Ai
′′′′(X)

[

2

λ|ϕ′′′(ks, θ)|

]5/3

where X = [2λ2/ϕ′′′(ks, θ)]
1/3ϕ′(ks, θ). It can be shown that (12) reduces to (10) when θ = θc.

3 Discussions

Application of the present results to Kelvin waves and comparison with Peters’s result will be presented at
the workshop.
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