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HIGHLIGHTS

The interaction of a solitary wave with a group of eleven vertical cylinders is investigated in
three spatial dimensions, using a novel parallel CED solver that is based on the Particle-In-Cell
(PIC) technique. Interesting results have been achieved for the complex scattered wave field
and wave run-up on each individual cylinder within the group.

1 INTRODUCTION

Vertical cylindrical structures are widely employed in the coastal and offshore engineering area;
examples include the design of oil platforms, offshore wind turbine foundations and piled wharfs.
As a consequence it is important to understand the interaction of waves with multiple cylin-
ders in terms of the free surface motion, wave run-up and wave loading in the vicinity of the
structures. In the literature, numerous studies, both numerical and experimental, have been
carried on this topic. For example, Mo and Liu (2009) investigated non-breaking solitary wave
interaction with a single cylinder and a group of three cylinders through a Volume of Fluid
(VOF) based finite volume numerical solver and also physical experiments. Kagemoto et al.
(2014) carried out experimental and theoretical studies on the first-order and second-order
wave interactions among an array of two rows of vertical circular cylinders. In this abstract,
attention is focused on the numerical modelling of a solitary wave interacting with a group of
eleven cylinders arranged in a staggered spatial configuration.

The Particle-In-Cell (PIC) based PICIN solver (Kelly et al., 2015; Chen et al., 2016) is extended
to three spatial dimensions and employed for the numerical modelling. The PICIN solver is
hybrid Eulerian-Lagrangian; both particles and grid are employed in this solver due to its PIC
nature (see Harlow (1964)). The novelty of the PICIN model lies in the fact that the linear
non-advection terms of the Navier-Stokes equations are resolved on a staggered grid (Harlow
and Welch, 1965), while the nonlinear advection terms are handled using the particles in a
Lagrangian manner. This makes the model both efficient and flexible in terms of simulating
complex physical problems such as wave breaking and violent wave-structure interaction (see
Kelly et al. (2015) and Chen et al. (2016) for more details).

2 NUMERICAL MODEL

The 3D PICIN model solves the incompressible Newtonian Navier-Stokes equations for single-



phase flow:
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where, in 3D, u = [u,v,w|’ is the velocity field; ¢ is the time; p is the pressure; f =

[0.0,0.0, —9.81]7 represents the body force; p is the liquid density and v is the kinematic
viscosity of the fluid.

Both Lagrangian particles and an Eulerian grid are employed in the PICIN solver. Following
Brackbill and Ruppel (1986), the particles are assigned with the mass and momentum of the
fluid, while the underlying grid is solely employed for computational convenience. The overall
solution is divided into two major steps: an Eulerian step and a Lagrangian step. In the Eulerian
step, the Navier-Stokes equations, ignoring the advection term, are solved on the grid using
the pressure projection technique, where a pressure Poisson equation is resolved incorporating
the boundary conditions. For the free surface boundary, a second-order accurate technique
is employed following Gibou et al. (2002), and for the solid boundary, a Cartesian cut cell
based approach is utilised following Ng et al. (2009). Once the Eulerian step is completed, the
divergence-free velocity field on the grid is interpolated to the particles to update the velocity
field they carry. The velocity field is then advected by the particles in the Lagrangian step.
Note that the velocity field on the particles is transferred back to the grid at the beginning of
the Eulerian step in the next computational cycle. Interpolation schemes are used for velocity
transfer between the particles and grid; in the current model, while the particle-to-grid transfer
is conducted using a SPH-like kernel function, the grid-to-particle interpolation is achieved via
a fourth-order accurate weighted essentially non-oscillatory (WENO) scheme. For more details
of the PICIN solver, the reader is referred to Kelly et al. (2015) and Chen et al. (2016).

The current 3D PICIN model employs the state-of-the-art implementation of the open-source
library OpenMPI (www.open-mpi.org) for parallelisation. In this approach the computational
domain is decomposed into sub-domains based on the underlying grid and the particles are
allowed to move through the sub-domains, assigning the computational loads to each process.
The tests presented here were run on the High Performance Computing (HPC) system at the
University of Bath, UK.

3 CASE STUDY
3.1 Numerical Setup

Figure 1 shows a sketch depicting the setup of a numerical wave tank (NWT) and the locations
of a group of eleven vertical cylinders. The diameters, D, of the vertical cylinders are identical
and the cylinders are symmetrically placed in the NWT, with the centre-to-centre distances
being 2D between the adjacent cylinders in both the streamwise and the spanwise directions.
The length and width of the NWT are set to 28.71D and 9.93D, respectively. A piston-type
wave paddle is employed at one end of the NWT as shown in Figure 1 for wave generation.
The water depth, h, was fixed at 0.615D and the relative wave height H/h of the non-breaking
solitary wave studied is 0.4. It is noteworthy that the numerical setup here is inspired by the
test cases presented in Mo and Liu (2009). The grid size is set to Az = Ay = Az = 0.04h and
the Courant number is set to 0.5. The solitary wave is generated using the paddle wavemaker
following Wu et al. (2016).

3.2 Results
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Figure 1: Sketch (top view) showing locations of the eleven cylinders in the numerical wave tank. D is the
diameter of the cylinders.

Figure 2 shows two snapshots of the simulated wave field in plan view at two different time
instants. The solitary wave travels from left to right. From Figure 2, it is seen that, as the
solitary wave passes by the cylinders, circular scattered waves start to propagate radially in the
direction away from the cylinders. Moreover, as the scattered waves interact with each other,
a complex wave field forms. It can be seen from Figure 2(a) that a steep wave (maybe close to
breaking) forms in front of the cylinders 5 and 6 due to the symmetric scattered waves from
both cylinders interacting with each other and propagating upstream. However, as seen from
Figure 2(b), similar waves emanating from cylinders 2 and 3 are blocked by cylinder 4, and the
waves could be reflected back and trapped in the cylinder group 1-2-3-4.
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Figure 2: Snapshots (2D top view) of the numerical simulation of a solitary wave interacting with a group of
eleven cylinders.

Figure 3 shows wave run-up at the upstream stagnation points of the cylinders. Since the flow
field is symmetrical, the results are presented for two cylinder groups based on their positions:
the first group consists of cylinders 1, 4 and 7, which are located in the middle, and the second
group includes cylinders 2, 5, 8 and 10, which are located at the rightmost side, as we face
downstream. The results are all shifted in time, with the time instants of all main peak values
aligned with the non-dimensional time #(g/h)'/? = 0. It can be seen that all cylinders in the first
group (located in the middle) exhibit very similar wave run-up at this spatial configuration of
cylinders. Similar run-up is also observed at the lateral cylinders 2, 8 and 10, with the exception
of cylinder 5, which is located at the farthest front of the cylinder group. Both the first and
the secondary peaks of the wave run-up at cylinder 5 appear to be the largest. In particular,
the very steep secondary peak wave confirms the observations in Figure 2(a).

3 CONCLUSIONS
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Figure 3: Comparison of wave run-up at the front stagnation points of the cylinders.

This abstract presents a numerical study of a solitary wave interacting with a group of eleven
cylinders in three spatial dimensions. Complex hydrodynamic processes involving violent wave-
wave and wave-structure interactions tend to occur in this case. The Particle-In-Cell based
parallel PICIN solver is capable of handling such complex 3D scenarios. Additional results,
including solitary wave interaction with a single cylinder and three cylinders, will also be
presented.
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