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Highlights

• An analytic model is developed for oblique wave scattering by floating and submerged porous
elastic plates of different structural parameters.

• The nature of the roots of the complex dispersion relation is analyzed using the counting argu-
ment and contour plot.

• Eigenfunction expansion method is used to handle the physical problem. The reflection, trans-
mission and dissipation coefficients, wave force and plate deflections are computed to examine
the effects of various wave and structural parameters in a creating tranquility zone.

• It is observed that a significant amount of wave energy is dissipated due to the presence of the
floating and submerged porous plates, thus resulting in less wave reflection and transmission.

1 Introduction

To reduce wave reflection and transmission, floating and/or submerged horizontal porous structure
can be used as an effective breakwater or wave absorber. In comparison with traditional structures,
horizontal structures are less dependent on local seabed geological conditions and are more economical
in the use of construction materials. Since the early studies of Heins (1950) on wave interaction with
a submerged horizontal solid plate, many researchers have developed various mathematical techniques
to investigate the hydrodynamic performance of floating/submerged horizontal plates. Hassan et
al. (2009) developed an analytic solution using the eigenfunction method for wave scattering by a
submerged elastic plate. Recently, Meylan et al. (2016) used the eigenfunction, boundary-element and
finite-element methods for wave interaction with a floating porous elastic plate. In the present study,
matching conditions and the orthogonal property of the open water region vertical eigenfunctions along
with free, simply-supported and clamped edge conditions are used to handle the the mathematical
boundary value problem as in Hassan et al. (2009).

2 Mathematical formulation

The present physical problem is considered in a three-dimensional Cartesian co-ordinate system with
the x- and y-axes being in horizontal directions and the z-axis in the vertical (positive upward) direction
under the assumption of linearized water wave theory and small amplitude structural response. A finite
thin porous elastic plate of length B is floating at the mean free surface z = 0 and another submerged
elastic plate having the same length B of different structural parameters is kept horizontally at z = −s
in water of finite depth h. The fluid domain is divided into four regions as shown in Fig. 1. Assuming
that the fluid is inviscid, incompressible and irrotational, the surface gravity waves interact with
the floating flexible plate making an oblique angle θ with the x-axis and the wave motion is simple
harmonic in time with an angular frequency ω. The velocity potentials are written in the form
Φj(x, y, z, t) = Re{φj(x, z)e−i(kyy−ωt)} for j = 1, 2, 3, 4 which satisfy the Helmholtz equation with
ky = k0 sin θ. Further, ζj(x, y, t) = Re{ηj(x)e−i(kyy−ωt)} for j = 1, 2 being the deflection of the floating
and submerged plates respectively. It is assumed that the bottom bed is rigid, thus, ∂Φj/∂z = 0 on
z = −h for j = 1, 3, 4. The linearized kinematic conditions on the floating and submerged elastic
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Figure 1: Schematic diagram of wave scattering by floating and submerged porous elastic plates.

porous plates are given by

∂Φ2

∂z
=
∂ζ1
∂t

+ ik0G1Φ2 and
∂Φ2

∂z
=
∂Φ3

∂z
=
∂ζ2
∂t

+ ik0G2(Φ2 − Φ3), (1)

respectively, at z = {0,−s} with Gj for j = 1, 2 are the porous-effect parameters of floating and
submerged plates respectively, and k0 is the wave number of the plane gravity wave. The plate
deflection ζj in the presence of compressive force satisfies (as in Behera and Sahoo, 2015)(

EjIj∇4
xy +Qj∇2

xy +mpj
∂2

∂t2

)
ζj = Pj+1(x, y, z, t)

∣∣
z=β− − Pj(x, y, z, t)

∣∣
z=β+

, (2)

where β = {0,−s}, ∇2
xy = ∂2/∂x2 + ∂2/∂y2, the linearized hydrodynamic pressure Pj(x, y, z, t) in the

j−th region and other boundary conditions being same as given in Hassan et al. (2009). Moreover,
P1(x, y, z, t) at z = 0+ is the constant atmospheric pressure. Further, Ej is the Young’s modulus, Qj
is the compressive force acting on the j−th plate, mpj = ρpjdj is the mass per unit length, ρpj is the
density of the flexible plate, dj is the thickness, Ij = d3j/[12(1 − ν2)] associated with the j-th plate
and ν being the Poisson’s ratio of each of the plate. Eliminating Pj and ζj , from Eqs. (1) and(2), the
conditions on the floating and submerged plates are given by(

E1I1∇2
xy +Q1∇2

xy +mp1
∂2

∂t2

)(∂Φ2

∂z
+ ik0G1Φ2

)
= ρ
{∂2Φ2

∂t2
− g∂Φ2

∂z

}
, on z = 0, (3)(

E2I2∇4
xy +Q2∇2

xy +mp2
∂2

∂t2

){
∂Φ3

∂z
+ ik0G2(Φ3 − Φ2)

}
= ρ

(
∂2Φ2

∂t2
− ∂2Φ3

∂t2

)
, on z = −s. (4)

The continuity of velocity and pressure at x = 0 and x = B yield

∂Φj

∂x
=
∂Φ2

∂x
,

∂Φj

∂x
=
∂Φ3

∂x
, Φj = Φ2, Φj = Φ3, (5)

where j = 1 at x = 0 and j = 4 at x = B. Assuming that both the floating and submerged plates are
clamped at both ends, the vanishing of plate deflection and slope of the plate deflection yield

∂Φ2

∂z
= 0,

∂2Φ2

∂x∂z
= 0 at (α, β), (6)

where α = {0, B} and β = {0,−s}. On the other hand, the conditions for simple-supported and free
edges are same as described in Behera and Sahoo (2015)

3 Method of Solution

The form of the spatial velocity potentials φ(x, z) in regions 1, 2, 3 and 4 are given by

φ1 = I0e
−iµ0xf10(k0, z) +

∞∑
n=0

Rne
iµnxf1n(kn, z), for x < 0, −h < z < 0, (7)

φ2 =

∞∑
n=−4

{
Ane

−iϑnx +Bne
iϑn(x−B)

}
f2n(pn, z), for 0 < x < B, −s < z < 0, (8)
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φ3 =
∞∑

n=−4

{
Ane

−iϑnx +Bne
iϑn(x−B)

}
f3n(pn, z), for 0 < x < B, −h < z < −s, (9)

φ4 =

∞∑
n=0

Tne
−iµn(x−B)f1n(kn, z), for x > B, −h < z < 0, (10)

where I0 is the incident wave amplitude, and Rn, An, Bn and Tn for n = 0, 1, 2, . . . are the un-

known expansion coefficients with µn =
√
k2n − k2y and ϑn =

√
p2n − k2y. The eigenfunctions f1n(kn, z),

f2n(pn, z) and f3n(pn, z) for n = 0, 1, 2, . . . are given by

f1n(kn, z) =
cosh kn(z + h)

cosh knh
, f2n(pn, z) =

cosh pn(z + h)− Fn sinh pn(z + h)

cosh pnh− Fn sinh pnh
, (11)

f3n(pn, z) =
tanh pn(h− s)− Fn

tanh pn(h− s)
cosh pn(z + h)

cosh pnh− Fn sinh pnh
, (12)

Fn =
Unpn tanh2 pn(h− s)

Unpn tanh pn(h− s)− (K − ik0G2Un){1− tanh2 pn(h− s)}
, (13)

with Un = D2p
4
n − N2p

2
n −M2 and Mj = mpjω

2/(ρg) for j = 1, 2. The eigenvalues kn satisfy the
dispersion relation ω2 = gkn tanh knh, where k0 is positive real and kn = iκn for n = 1, 2, 3, . . . with
κn being real. The eigenvalues pn satisfy the dispersion relation

K − Vnpn tanh pnh+ ik0G1Vn = Fn(K tanh pnh− Vnpn + ik0G1Vn tanh pnh), (14)

where Vn = D1p
4
n − N1p

2
n −M1 + 1. It may be noted that for Gj = 0 for j = 1, 2, the dispersion

relation in Eq. (14) reduces to the dispersion relation in case of wave interaction with floating and
submerged impermeable elastic plates, which has two distinct positive real roots, eight complex roots
pn of the form a ± ib and c ± id, and infinite number of imaginary roots as shown in Fig. 2(a), and,
in case of porous elastic plates, all the roots of the dispersion relation in Eq. (14) are complex in
nature as shown in Fig. 2(b), and the position of the roots are close to the roots for Gj = 0. In the
present study, the roots lying in the first and fourth quadrants of the complex plane are considered for
keeping the boundedness property of the velocity potentials. Using the velocity potentials as in Eqs.
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Figure 2: Contour plots of roots of the dispersion relation for flexible and submerged horizontal
(a) non-porous elastic plate and (b) porous elastic plate with H = 5 m, h/H = 0.5, T = 8 sec.,
g = 9.81 m/sec2, ν = 0.3, Ej = 5 GPa, dj = 0.1, Qj = 0 and Gj = 1 for j = 1, 2.

(7)–(10), matching conditions Eq. (5) and the orthogonality of the eigenfunctions f1n (as in Hassan
et al., 2009), a system of 4N equations is obtained. Further, for the determination of the unknowns
Rn, Tn, An and Bn, edge conditions as in Eq. (6) are used to find another eight additional equations.
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4 Results and discussion

In the present study, various physical parameters are kept fixed as h/H = 0.5, ν = 0.3, Ej = 5 GPa,
dj = 0.1, Qj =

√
EjIjρg, θ = 30◦ and Gj = 1 unless it is stated otherwise. The reflection, transmission

and dissipation coefficients are computed using the formulae Kr = |R0/I0|, Kt = |T0/I0| and Kd =
1− (K2

r +K2
t ). Figs. 3(a) and (b) depict that in case of porous elastic plates, very low wave reflection
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Figure 3: Effect of Gj on (a) Kr and (b) Kt as a function of k0b. Effect of s/h on (c) Kr and (d) Kt

as a function of θ for b/h = 2, G1 = 0 and G2 = 1.

and transmission will occur as a result of the dissipation of wave energy. Further, the amplitude of the
oscillatory pattern of the reflection and transmission coefficients decreases with an increase in k0B in
case of Gj 6= 0. Moreover, in case of impermeable plates, nearly zero reflection and full transmission
is observed periodically and satisfies K2

r + K2
t = 1. On the other hand, from Figs. 3(c) and (d), it

is observed that the reflection coefficient increases and transmission coefficient decreases when the
submerged plate is nearer the floating plate. Further results will be presented in the workshop.
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