
The 32nd International Workshop on Water Waves and Floating Bodies, Dalian, China, 23-26 April, 2017.

Excitation of Ship Waves by a Submerged Object:
New Solution to the Classical Problem

Andrey V. Arzhannikov, Igor A. Kotelnikov

Budker institute of Nuclear Physics SB RAS
∗ i.a.kotelnikovinp.nsk.su

HIGHLIGHT
We have proposed a new method for solving the problem of ship waves excited on the surface of a nonvis-
cous liquid by a submerged object that moves at a variable speed. A new solution of the classic problem
of ship waves generated by moving a submerged ball with constant velocity parallel to the equilibrium
surface of the liquid has been described. As a second example of usage our method, we have considered
vertical oscillations of the submerged ball.

1 INTRODUCTION
In this paper we describe a new method for solving the problem of ship waves excited by the motion of a
submerged object which has been proposed by us in [1].

In contrast to Havelock’s papers [3,4], we do not introduce artificial viscosity to ensure the convergence
of the integrals. We begin with a solution of the non-stationary problem, suggesting that once in the past
a submerged object had been in the state of rest. Transforming our solution to the limit of motion at
a constant speed, we automatically arrive at a rule handling the singularity in the integrand, which is
completely analogous to the Landau bypass rule in plasma physics [6]. The very same singularity in the
integrand corresponds to the Cherenkov resonance V cosθ = ω/k, which generates gravity waves with
frequency ω =

√
gk and wave vector k, which forms an angle θ with the direction of the velocity. In

contrast to the Cherenkov radiation of electromagnetic waves in the optics [2, 7], where phase velocity
ω/k has a predetermined value (equal to the speed of light in the medium), due to the dispersion of phase
velocity ω/k =

√
g/k, the gravity waves are emitted in the entire range of angles θ from 0 (forward in the

direction of the body motion) to π (against the direction of motion). Each value of the angle θ corresponds
to certain value of the wave number

k(θ) =
g

V 2 cos2 θ
. (1)

As a consequence, the smallest wave number (i.e., the highest wavelength) that is compatible with the
Cherenkov resonance condition is

kg = g/V 2. (2)

It should be explained that the Cherenkov resonance concept was not mentioned earlier in the theory
of ship waves. Instead, various authors refer to a so called “steady-state condition” or to a “radiation
condition”.

As the second example, we considered vertical oscillatory motion of the ball with a small amplitude.
In this case, the solution is expressed in terms of a single integral and describes a radial wave on the liquid
surface, diverging from the epicenter over the ball.
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2 EXCITATION OF SHIP WAVE BY A SUBMERGED BALL
We first construct a solution of the Laplace equation

∇
2
φ(x,y,z, t) = 0 (3)

with the boundary conditions

∂

∂z
φ(x,y,0, t) =

∂

∂t
ζ(x,y, t), (4)

∂

∂t
φ(x,y,0, t)+gζ(x,y, t) =−1

ρ
δp(x,y, t) (5)

at the plane z = 0 of unperturbed liquid surface, where the pressure is given by the external field δp(x,y, t).
Assuming that in the distant past there was no external pressure source and, respectively, the liquid surface
was quite flat, we arrived at the following expression for the water surface elevation

ζ(x,y, t) =
∫∫ dkx

2π

dky

2π
ζk(t)eikxx+ikyy, (6)

where

ζk(t) =
√

kg
ρg

∫ t

−∞

sin
[√

kg(τ− t)
]

δpk(τ)dτ, (7)

δpk(t) =
∫∫

dxdyδp(x,y, t)e−ikxx−ikyy . (8)

We then extend this solution to the case of a submerged body and obtain the following expression

ζk(t) =−2k
∫ t

−∞

cos
[√

kg(τ− t)
]

φ
(0)
k (τ)dτ, (9)

where

φ
(0)
k (t) =−πa3

k
∂

∂t
ekZ(t)−ikxX(t)−ikyY (t) (10)

in case of submerged ball of radius a moving along a given trajectory {X(t),Y (t),Z(t)}. Having found
the Fourier-amplitude ζk(t), one can restore function ζ(x,y, t) using Eq. (6), although computation of the
involved integrals represents a challenge task. Convergence in the integral (9) for more or less realistic
functions X(t), Y (t), Z(t) is guaranteed by the fact that their time derivatives tend to zero as t→−∞.

3 UNIFORM MOTION OF THE BALL
As a first application of our method we treated the limit of a ball that moves at fixed depth Z(t) = −h =
const with constant velocity V = const. The result of computation is represented as a sum of two terms, ζ0
and ζ1, each of which is a single integral. We managed to calculate these integrals and obtained relatively
simple asymptotic expressions for ζ in case of either small or large Froude number F =V/

√
gh. The study

of these asymptotics showed that the first term can be interpreted as describing the “Bernoulli hump”, and
the second term stands for what is called “Kelvin wedge”. We note that Havelock’s formula [3, 5] also
contains two terms but they have no so simple physical meaning.

Two-dimensional maps of the liquid surface elevation are shown in Fig. 1 for a set of the Froude
numbers.
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Figure 1. (Color online) Profile of the ship wave at different values of the Froude number: a) F = 0.3,
λg/h = 0.57; b) F = 0.45, λg/h = 1.27; c) F = 1.0, λg/h = 6.28; d) F = 1.5, λg/h = 14.13; e) F = 2.0,
λg/h = 25.13; f) F = 3.0, λg/h = 56.55.
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4 VERTICAL OSCILLATION OF A SUBMERGED BALL
As a second example we treated vertical harmonic oscillations of the submerged ball with a small ampli-
tude δZ and given frequency ω, so that

X(t) = Y (t) = 0, Z(t) =−h+δZ cos(ωt).

In this case the liquid surface elevation is given by the expression

ζ(r, t) = Re[ζ(r)e−iωt ], (11)

where

ζ(r) =−a3ω2

g
δZ

∫
∞

0

k2 J0(kr)e−hk

k− (ω+ i0)2/g
dk, (12)

is the complex amplitude, J0 denotes the Bessel function of zero order, and r =
√

x2 + y2.
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