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1 INTRODUCTION

This work is an extension of the finite difference potential flow solver Ocean Wave3D-Seakeeping
developed by Afshar (2014) to include generalized modes. The continuity equation is solved
using a fourth-order centered finite difference scheme which requires that the entire fluid domain
is discretized as opposed to the more popular panel method where only the body surface - and
sometimes the free surface and sea bottom - are discretized. The advantage for the finite
difference solver is thought to be found for complex or high-resolution problems where the
computational time will scale better due to the sparse nature of the coefficient matrix. The
solver is built using the open source framework Overture which consists of C++ libraries for
solving partial differential equations on overlapping grids and has a built-in overlapping grid
generator Ogen.

2 MATHEMATICAL FORMULATION

A flexible floating or submerged body of length L with a constant forward speed, U, is considered
in a semi-infinite fluid of depth h with a free surface. The linearized equation of motion can be
expressed in the frequency domain as:
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With N being the number of flexible modes. Here M;; is the structural mass matrix, a;; is the
hydrodynamic added mass, B;; is the hydrodynamic damping, Kj;; is the structural stiffness, Cj;
is the hydrostatic restoring stiffness, X; is the wave exciting force and &; is the motion response
phasor. How the coefficients for the matrices are obtained are described in the subsections.

2.1 Hydrodynamic Problem
The governing equation is the continuity equation:

AD =0 (2)

The solution is decomposed into a steady and an unsteady solution. The steady solution,
op = —Ux + ¢gp, is found using the Double-Body linearization by solving the boundary value

problem:
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With U = (-U,0,0) and n the unit normal vector to the body surface Sy. The unsteady
solution, ¢,,, consists of the velocity potential due to the incoming waves, the scattered waves
and the radiated waves for all degrees of freedom respectively. It is found by subjecting (2) to
the following linearized boundary conditions. The dynamic and kinematic free surface boundary
conditions can be written (see for example Afshar (2014)):
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Since the wave elevation is likewise split in a steady and an unsteady solution: n=n,+mn,. The
double-body elevation can be calculated using the dynamic free-surface boundary condition (4)
dropping the unsteady terms. The body boundary condition is:
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Where W = V¢, and S; are the mode shapes as defined in the next section. And finally the
bottom boundary condition:
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This initial boundary value problem is solved in the time domain using a pseudo-impulsive
Gaussian impulse and its time derivative as the input displacement, ¢;(t), and velocity ¢;(t) in
the boundary condition. Since the floating body is regarded as a linear system the hydrody-
namic coefficients in the frequency domain can subsequently be found by a Fourier transform
of the radiation and diffraction forces Fj; and F;

=0 on z=-—h (7)
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2.2 Structural Model

The flexibility of the ship is considered by extending the rigid mode analysis (first 6 modes)
to several flexible modes as first described by Newman (1994) by introducing a vector shape
function S; = [u;,vj,w;]. This yields a new expression for the generalized normal vector as
the normal component of the shape function on the body surface: n; =S;-n. The total
displacement of a point on the ship x is then given as a sum over the products of modal
amplitude,§;, and the shape function:

6+N
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The simplest approximation for the vertical deflections of the hull is the set of 1D free-free
homogeneous beam modes which are given analytically by:
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Where n=1,2,..N, ¢ =2x/L is the normalized x-coordinate and k,, are the eigenvalues satis-
fying the eigenvalue equation:

(—1)™tan Ky, +tanh Ky, =0 (11)

These modes are orthogonal leading to simple expressions for the flexible part of the mass
matrix and the structural stiffness matrix:

1
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Here M is the total mass, E1 is the bending stiffness comprised of the elasticity modulus and
the moment of inertia of the cross section. The rigid part of the mass matrix is defined as usual
and the rigid part of the structural stiffness matrix consists of zeroes.

2.3 Hydrostatic Problem

The expression for the hydrostatic restoring force is given in Malenica (2009):

Cij = 05+C£-4 :PQ//SO nj(wi+ZDi) dSJrg///V ps(SiV)wj dVv (13)

3 FLEXIBLE RESPONSE OF PRISMATIC BARGE

The response amplitude operator for the first flexible mode in figure 1a is compared to exper-
iments and numerical computations carried out by Malenica (2003) for a prismatic barge at
zero speed in head seas. The characteristics of the prismatic barge are described in detail in
Malenica (2003). Furthermore the vertical displacement amidships is compared to experiments
by Malenica (2003) and numerical computations by Kashiwagi (2015) in figure 1b.
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Fig. 1: Response amplitude operator for the first flexible hull and vertical displacement midship
for the prismatic barge.

4 EFFECT OF FORWARD SPEED FOR THE MODIFIED WIGLEY HULL

Kashiwagi (2015) has presented forward speed results for a modified Wigley hull which is
attempted replicated by the authors. It should be noted that the geometry of the ship hull
for the Ocean Wave3D-Seakeeping computation is deviating due to the limitations of the finite
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difference solver to only have rounded edges which in this case alters the stern and bow quite
dramatically which is thought to be the main reason for the somewhat different results obtained
here. The same conclusions as in Kashiwagi (2015) are drawn: The forward speed affects the
radiation problem but not the diffraction problem.
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Fig. 2: Hydrodynamic coefficient dependency for first flexible mode on forward speed for the
modified Wigley hull. Top row is Kashiwagi 2015.

5 CONCLUSIONS

Generalized modes have been implemented in the Ocean Wave3D-Seakeeping solver which has
been validated against both numerical and experimental data for the zero speed case. For
forward speed problems some preliminary results have been obtained which show the correct
trends, but further validation is required. The next step will be to extend the solver to solve
problems in quartering seas to validate the forward speed solver adequately.
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