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HIGHLIGHT

The far-field method for calculation of the wave drift force is implemented in the high order finite-
difference seakeeping solver. The implementation is based on the Maruo formulation which employes
the Kochin function to obtain the complex amplitude of the velocity potential in the far-field. The
results are shown both for zero and forward speed for the floating hemisphere and two ship geometries.
Comparisons with WAMIT and near-field calculations are also presented.

1 INTRODUCTION

At the Technical University of Denmark, our group will soon release an open-source seakeeping
solver (OceanWave3D-Seakeeping), which has been developed over the past five years (Amini Af-
shar, 2015). The code is a linearized potential flow solver, and can be used to solve for the wave resis-
tance, radiation, diffraction and also generalized flexible modes problems. 4th order finite-difference
approximation on overlapping grids are used to solve the Laplace equation in the whole flow domain.
The free-surface conditions are integrated in time using 4th order Runge-Kutta scheme to update the
solution at the free surface. For a more detailed explanation about the numerical method and the
stability of the scheme please refer to (Amini Afshar, 2015). The solver has been written in C++
inside an open-source library called Overture (Brown et al., 1999). The library also provides the
hyperbolic grid generation facilities, which can be used to build the overset grids for ship geometries.
The near-field and far-field methods for calculation of the wave drift forces have been implemented.
This paper presents the results and also discusses some challenges of the far-field calculations based
on the Kochin function integral.

2 FORMULATION

Although the double-body flow linearization is implemented in the code, we outline here only the
Neumann-Kelvin linearization of the problem for simplicity. The continuity equation ∇2φ = 0, is
solved in the fully discretized flow domain, subjected to the dynamic and kinematic free-surface
conditions at z = 0 as:

∂φ
∂ t

=−gζ +U
∂φ
∂x

and
∂ζ
∂ t

=
∂φ
∂ z

+U
∂ζ
∂x

.

The forward speed of the body is denoted by U . The surface elevation and velocity potential are
denoted ζ and φ respectively. The boundary conditions applied at the undisturbed body surface SB
for the motion of the body in kth direction ξk (radiation problem φk), and for the diffraction problem
(φs) are:

∂φk

∂n
= ξ̇k ·nk +ξk ·mk and

∂φs

∂n
=−n ·∇φ0(r, t) .



The time differentiation is denoted by the over-dot. The position vector is shown by r, and the
incident wave velocity potential is φ0. The generalized outward normal vector to the body surface
n = (n1,n2,n3) and (n4,n5,n6) = (r×n). The m-terms are defined by mk = (0,0,0,0,Un3,−Un2).
All velocity potentials are also subjected to the no-flux condition at the bottom of the domain and at the
far-field truncation boundary. The applied forces are obtained by integration of the first-order pressure
over the body surface integration. The velocity potentials, the radiation and the wave excitation forces
in the time domain are obtained by the solution to the above initial boundary value problem. After
Fourier transforming the time-domain solutions, the equations of motion are solved in the frequency
domain to obtain the first-order displacement of the body in the kth direction ξ̂k. By this all first-order
quantities required for calculation of the wave drift force in the frequency domain will be ready.

3 WAVE DRIFT FORCE USING FAR-FIELD APPROACH

Using the principle of conservation of the momentum, the Reynolds transport theorem and also the
Bernoulli equation, one can obtain the following relation for the mean wave drift force F1 as an
integral over a far-field control surface as:

F1 =−
∫∫

s∞

(pn1 +ρV1Vn) ds , (1)

in which the overline signifies a time average quantity. The normal component of the velocity vector
at the control surface is Vn, and the velocity vector along the length of the ship (x direction) is given
by V1. Using the Kochin function one can calculate the complex amplitude of the velocity potential
at the infinity from an integral over the surface of the body. By expressing V1 and Vn in the above
far-field integral, as a function of these potentials at infinity, one can transform the wave drift force
to an integral over the surface of the body. This procedure is shown by (Newman, 1967) for the zero
speed problem. For the forward-speed problems the derivation of the far-field method was given by
(Maruo, 1960) who used the Kochin function to obtained the following relationship for the added
resistance RW :

Rw =
ρ
8π

{∫ −θ0

−π/2
+
∫ π/2

θ0

−
∫ 3π/2

π/2
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κ1 (κ1 cosθ − k cosβ )√
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dθ +

∫ 2π−θ0

θ0

|H1(κ2,θ)|2
κ2 (κ2 cosθ − k cosβ )√

1−4Ωcosθ
dθ
}
. (2)

The Kochin function which gives the far-field complex amplitude of the velocity potential at an az-
imuthal angle θ is defined as:

H1(κ j,θ) =
∫∫

SB

(
φB

∂
∂n
− ∂φB

∂n

)
exp
[
κ jz+ iκ j (xcosθ + ysinθ)

]
ds , (3)

where φB includes both the radiation and scattering velocity potentials. Corresponding to each θ a
local wave number κ j is given by: κ1,2 = κ0(1− 2Ωcosθ ±

√
1−4Ωcosθ)/(2cos2 θ). In which

κ0 = g/U2, k = 2π/λ (λ is the wave number), Ω = Uω/g, ω = k (c−U cosβ ), c2 = g/k where
g is acceleration due to gravity, and the heading angle is shown by β with β = π corresponds to
head seas. The integration bound parameter θ0 = 0 for Ω ≤ 1/4, and otherwise its value is given by
θ0 = cos−1 (1/4Ω).



4 ZERO SPEED RESULTS (FLOATING HEMISPHERE AND KVLCC2 SHIP HULL)

For the zero-speed case where Ω = 0, the value of κ1 becomes infinity, and κ2 approaches the wave
number k. It can be also seen that the terms related to the H1(κ1,θ) from Eq. 2 are all proportional
to κ2

1 exp(κ1z) which in the limit as κ1 → ∞ approaches to zero. Thus the only contribution to the
wave drift force comes from the last line integral with the bounds from 0 to θ . The surge and heave
problems together with the scattering problem for a floating hemisphere are solved. The results for
the drift force are shown in (Figure 1(a)), where D denotes the diameter and a is the radius of the
hemisphere. The incident wave amplitude is also given as A. The computation based on the near-field
formulation is also given together with WAMIT results. In (Figure 1(b)), results are shown for the
added resistance of the KVLCC2 hull in head seas which is free to heave, pitch and surge. The ship
length is L, the breadth is B and the far-field and near-field methods are compared.

5 FORWARD-SPEED RESULTS (WIGLEY HULL)

When U 6= 0 all four line integrals from Eq. 2 are relevant for the wave drift calculation. As has also
been shown by (Liu et al., 2011), κ1� κ2 which implies that at the corresponding θ angles, the κ1
waves are much shorter than the κ2 waves. This could justify neglecting the contributions from the
first three integral which are related to κ1. For the Wigley hull the heave and pitch problems together
with the scattering problem for the head seas have been solved. The Froude number Fn = U/

√
gL

is 0.3. The added resistance by the near-field and the far-field formulations are plotted together with
the experimental data in (Figure 2(a)). In the calculation of the integral from Eq. 2, close to the
integration bounds (θ0 and 2π − θ0) we have faced some difficulties. First it can be seen that the
term κ2 (κ2 cosθ − k cosβ )/(

√
1−4Ωcosθ) = Q(κ2,θ) goes to infinity at these bounds. We expect

however, the product of the Kochin function with this term at the limits to be zero, thus we have
set the whole integrand to zero at the bounds. However, the above-mentioned term is also very
large close to the bounds, see (Figure 2(b)) which is given for ω = 3.997. Therefore it is necessary
for the H1 function to be very close to zero at the limits in order to ensure a finite integrand. Our
original calculation of H1 is shown in (Figure 2(d)), and this fails to give accurate results near the
θ bounds. This results in an unreasonably large integrand as shown in (Figure 2(c), (d)) and an
inaccurate drift force. We attribute this behavior to the errors associated with numerical integration of
short wavelength components (large κ2) on a relatively coarse discretization of the ship hull. As a first
step to overcome this issue, a linear extrapolation has been used to evaluate the integrand between θ0
and a selected value of θ corresponding to a highest resolvable κ2. Work is underway to understand
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Figure 1: The wave drift force for: (a) a floating hemisphere and (b) the KVLCC2 ship. U = 0
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Figure 2: (a) The added resistance, (b) the Q function, (c) the integrand in Eq. 2, and (d) |H1|2 function

the problem better and to calculate the Kochin function accurately out to the integration bounds.

6 CONCLUSIONS

The Kochin function far-field approach for calculation of the added resistance has been implemented
in the finite-difference seakeeping code. For the forward-speed problems the Kochin function requires
to be evaluated appropriately close to the integration bounds.
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