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Highlights:

• Matched eigenfunction-expansion method with a two-
layer fluid model is employed to investigate the hy-
drodynamic behavior of a floating cylindrical moonpool
with an entrapped two-layer fluid.

• Parametric studies have been performed to identify the
dependence of the heave resonance characteristics on
moonpool configuration and density stratification.

1 Introduction
This paper aims to study the hydrodynamic behavior of a
floating cylindrical moonpool (possibly a solar pond) gener-
ated by its harmonic, forced heave motion. The ”pond” is
a large semi-submerged open thin-walled circular cylinder
designed for fresh-water storage, in which a certain density
stratification is normally expected. Both the fluid motion
inside the moonpool or pond and the dynamic behavior
of the floating structure can be critical issues. This type
of problem was initially studied by Miloh [4] based on an
eigenfunction matching method similar to that developed
by Yeung [6] and wave exciting forces were computed for 3
modes of motion. However, the density stratification inside
the pond and the wall thickness was not modeled in that
study.
The hydrodynamic problem of a floating solar pond is

very similar to that of a rectangular moonpool. Molin [5]
demonstrated a resonance inside the moonpool based on
linearized water-wave theory. Yeung & Seah [8] and Faltin-
sen et al. [2] studied the two-dimensional piston-like wave
sloshing inside a moonpool based on a domain decomposi-
tion scheme. Mavrakos [3] and Chau & Yeung [1] studied
the three-dimensional moonpool/co-axial cylinders geome-
try. Those studies have been only focused on a single-layer
fluid, but density can change because of variations in salin-
ity or temperature in the vertical direction is possible. If a
thin pycnocline should exist, we can model it simply as a
two-layer fluid with distinct but constant densities in each
layer. Two-dimensional moonpool resonance in a stratified
flow has been studied by Zhang & Bandyk [9, 10] for differ-
ent moonpool configurations. A comprehensive treatment
of the three-dimensional wave-body interaction in a two-
layer fluid can be found in [7].
The focus of the present study is the three-dimensional

wave radiation because of heave excitation from the bot-
tom of the finite-thickness vertical cylinder with an open-
ing where fluid density stratification occurs. We first pro-
vide the mathematical formulation, followed by a numerical
scheme to solve the discretized linear system. A few prelimi-
nary results are presented, in particular, the hydrodynamic
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behavior of the floating solar pond near resonance is ex-
amined. Parametric studies are performed to examine the
effects of pond geometry and density stratification on the
resonant fluid motion and hydrodynamic coefficients. The
proposed model is effective in rapidly predicting resonant
characteristics for a given moonpool configuration, which
can be critical to associated design and optimizations.

2 Theory and Approach
The hydrodynamic problem induced by a forced small-
amplitude heave motion of a finite-thickness walled vertical
cylinder (‘solar pond’) of a finite draft is studied. The fluid
stratification inside the solar pond is modeled as a two-layer
fluid. The schematic for the problem and coordinate sys-
tem are illustrated in Fig. 1. Let the Oxy plane be the
calm-water surface, (r, θ) be the polar coordinates in the
horizontal plane, and the z-axis point upwards from the sea
floor. The internal and external radius of the cylinder are a
and b, respectively. The wall thickness of circular cylinder
is b− a. The draft of the floating cylinder is d. The depth
of upper and lower layers inside the pond are h1 and h2,
respectively, with corresponding densities being ρ1 and ρ2.
with a total internal water depth is h = h1+h2. The fluid is
assumed to be ideal and the flow irrotational. Heave motion
is studied here, the hydrodynamic problem is axisymmetric
about z−axis and the solution is expected to depend only
on z and r.

Let the heave motion of the floating circular cylinder be
ζ cos(ωt), where ω is the angular frequency and ζ is the
motion amplitude. We assume ζ ≪ O(d). The velocity
potential can be written as

Φ(r, θ, z, t) = ℜ
[
−iωζϕ(r, θ, z)e−iωt

]
(1)

where ϕ(r, θ, z) is the spatial velocity potential.
The governing equation for ϕ(r, θ, z, t) is the Laplace e-

quation(
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)
ϕ(r, θ, z) = 0 (2)

Considering the axi-symmetric behavior of the fluid mo-
tion, the governing equation can be further simplified to(
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∂z2

)
ϕ(r, θ, z) = 0 (3)

The linearized free-surface boundary condition is given
by

ϕz −Kϕ = 0 at z = h1 + h2 (4)

where K = ω2/g, and g is the gravitational acceleration.
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Figure 1: Definition of the problem and coordinate systems

The region of the fluid domain r ≥ 0 can be divided
into three subdomains which include Region I, II, and III
(Fig. 1). The spatial velocity potentials in those regions are
denoted by ϕI(m), ϕII and ϕIII , respectively. In region I,
m = 1 and m = 2 represent the solutions for the upper
and lower layers, respectively. ϕII is the velocity potential
of the subdomain underneath the cylinder bottom. ϕIII is
the velocity potential of the subdomain outside the body.
We remark that fluid is treated using a two-layer model
in region I, while the other two regions are modeled as a
single-layer fluid.
In region I, the interfacial surface boundary conditions

can be written as [7]

ϕI(1)
z = ϕI(2)

z at z = h2 (5)

γ
(
ϕI(1)
z −KϕI(1)

)
= ϕI(2)

z −KϕI(2) at z = h2 (6)

where γ = ρ1/ρ2 is the density ratio.
The hydrodynamic problem is axisymmetric about verti-

cal axis r = 0, implying

ϕI(m)
r = 0 on r = 0 (7)

The boundary condition at the seabed is given by

ϕI(2)
z = 0 at z = 0 (8)

In addition, ϕI(m) and ϕIII must satisfy the no-flux con-
dition on the solid body boundaries. Leveraging the sym-
metry property, we can write the vertical-face boundary
conditions as

ϕI(m)
r = 0 at r = a, h− d ≤ z ≤ h (9)

ϕIII
r = 0 at r = b, h− d ≤ z ≤ h3 (10)

The velocity potential in region I can be written as

ϕI(m)(r, z) =
∞∑
j=0

A1
jΛ

I
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j , z

)
(11)

where ΛI and Z(m) are the eigenfunctions in the horizontal
and vertical directions, respectively. Z(m) forms an orthog-
onal set in [0, h]. A1

j and A2
j are unknown coefficients which

will be determined by matching fluid velocity and potential
at the juncture boundary between regions I and II. n = 1
represents the surface wave mode and n = 2 denotes the

internal wave mode. k
(n)
j , j = 0, 1, ...,∞ are the eigenvalues

which can be computed by solving the dispersion relations
for a two-layer fluid system [10].

The velocity potential for region II should satisfy the
Laplace equation(

∂2

∂r2
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∂z2

)
ϕII = 0 (12)

with the following boundary conditions

ϕII
z = 1 for a ≤ r ≤ b, z = h− d (13)

ϕII
z = 0 for a ≤ r ≤ b, z = 0 (14)

The solution in region II can be written as

ϕII = ϕIIh + ϕIIp (15)

where the homogeneous solution can be expressed as

ϕIIh(r, z) =

∞∑
i=0

H(λi, r)Y (λi, z) (16)

with λi being the eigenvalues which are computed using

λi =
iπ

h− d
for i = 0, 1, . . . ,∞ (17)

The eigenfunction in the horizontal direction is defined
by

H(λi, r) =

{
C0

ln(r/a)
ln(b/a) +D0

ln(b/r)
ln(b/a) for i = 0

CiRi(r) +DiR
∗
i (r) for i ≥ 1

(18)

with

Ri(r) =
K0 (λia )I0(λir)− I0(λia)K0(λir)

K0 (λia) I0(λib)− I0(λia)K0(λib)
(19)

R∗
i (r) =

K0 (λir) I0(λib)− I0(λir)K0(λib)

K0 (λia) I0(λib)− I0(λia)K0(λib)
(20)

where K0 is the modified Bessel function of second kind
order zero; I0 is the modified Bessel function of first kind
order zero. Ci and Di are the coefficients which will be
determined by matching the potential and velocity at the
common boundaries.

The eigenfunction in the vertical direction Y (λi, z) is
written as

Y (λi, z) =

{
1 for i = 0√

2 cosλiz for i ≥ 1
(21)

where Y (λi, z) forms an orthogonal set in [0, h− d].
The particular solution ϕIIp, subject to boundary condi-

tions (13) and (14), is expressed as

ϕIIp(r, z) =
1

2(h− d)

[
z2 − r2/2

]
(22)



The governing equation (12) and bottom condition (14)
are also true in region III (replacing ϕIII by ϕII).
In region III, ϕIII also have to fulfil an appropriate radi-

ation condition as r → ∞, which has the form,

lim
r→∞

√
kr

(
∂ϕIII

∂r
− ikϕIII

)
= 0 (23)

where k is the wave number.
The solution in region III can be written as

ϕIII(r, z) =
∞∑
j=0

BjΛ
III (χj , r)Zp (χj , z) (24)

where Bj are unknown coefficients which will be determined
by matching the boundary condition at the juncture bound-
ary between regions II and III. χ0 are the wave number
related to ω through the dispersion relation,

ω2 = gχ0 tanh(χ0h3) (25)

where h3 = h2 + h1ρ1/ρ2 and χj are positive roots of

ω2 = −gχj tan(χjh3) , j ≥ 1 (26)

The eigenfunction in vertical direction Zp(χj , z) can be
written as

Zp(χj , z) =

{
cosh (χ0z) for j = 0
cos (χjz) for j ≥ 1

(27)

where Zp forms an orthogonal set in [0, h3].
ΛIII is the eigenfunction in the horizontal direction for

region III, which is defined as

ΛIII(χj , r) =

{
H0 (χ0r) /H0 (χ0b) for j = 0
K0 (χjr) /K0 (χjb) for j ≥ 1

(28)

where H0 is the Hankel function of the first kind order zero,
chosen to satisfy the far-field radiation condition.
It is noteworthy that the solutions in all the three regions

have to be matched at the adjoining boundaries. Therefore,
the following conditions have to be applied on those bound-
aries.
On the adjoining boundary r = a,

ϕI(2) = ϕII , 0 ≤ z ≤ h− d (29)

ϕI(2)
r = ϕII

r , 0 ≤ z ≤ h− d (30)

ϕI(m)
r = 0 , h− d ≤ z ≤ h (31)

On the adjoining boundary r = b,

ϕIII = ϕII , 0 ≤ z ≤ h− d (32)

ϕIII
r = ϕII

r , 0 ≤ z ≤ h− d (33)

ϕIII
r = 0 , h− d ≤ z ≤ h3 (34)

Upon solving the boundary value problem by matching
the solutions at the common boundaries, the five truncated
groups of coefficients Ci, Di, A

1
j , A

2
j , Bj can be obtained.

The non-dimensional heave added mass and damping coef-
ficients of the floating body are computed using the velocity
potential on the wetted body surface

µ33 + iλ33 =
1

b3

∫ 2π

0

dθ

∫ b

a

rdr ϕII(r,−d) (35)

where µ33 and λ33 represent the heave added mass and
damping coefficients, normalized by ρ2, ω, b. In addition,
both free surface and interfacial wave elevations inside and
outside the pond can also be obtained.

3 Results and Discussions

An eigenfunction matching method is employed to solve the
boundary value problem and ensure the mass and pressure
continuity at the juncture boundaries between the three dis-
crete fluid subdomains. The details of the numerical pro-
cedure can be referred to in [9, 10]. The proposed semi-
analytical model has been validated through computing for
a limiting case where h1/h2 = 0.1 and ρ1/ρ2 = 0.2, which
is expected to be approaching to a single-layer moonpool
problem. The obtained results are compared with the solu-
tions for the corresponding single-layer case. The compar-
isons of added mass and damping are illustrated in Fig. 2.
As shown, the present predictions for heave added mass
and damping agree well with the results by Mavrakos [3].
In Fig. 2, Helmholtz (pumping mode) resonant frequency
can be easily identified, where added mass changes the sign
and damping coefficient goes to zero.

In order to examine the dependence of hydrodynamic
behavior on density stratification and moonpool configu-
ration, extensive parametric studies have been performed.
Figs. 3 and 4 illustrates the effect of varying density ratio
on the heave added mass and damping. As observed, in
the high-frequency region, i.e. Ka > 0.8, the added mass
for a higher density ratio is larger than that with a lower
density ratio, which is expected. We also find that the den-
sity ratio can significantly affect Helmholtz resonance fre-
quency. As seen in those figures, as density ratio increases,
the Helmholtz resonance frequency decreases. In the low-
frequency region, i.e. Ka < 0.1, both the added mass and
damping coefficients increase with decreasing density ratio.
It is also observed, as wave frequency decreases to zero,
the damping coefficient is approaching to a constant value,
while the added mass shows a singular behavior. This may
be explained by the low-frequency asymptotics discussed
in [6]. Furthermore, higher-order resonances can also be
identified in Fig. 3, which can be associated with sloshing-
like motion inside pond. As the density ratio increases, the
higher-order resonance frequency and the bandwidth of the
resonance decreases.

The modulus of the free-surface wave amplitudes (scaled
by forcing amplitude) at r = 0, are presented in Fig. 5 for
a typical moonpool configuration. As illustrated, two type-
s of resonances can be recognized. One is associated with
Helmholtz resonance and the other is related with a higher-
order resonance. In order to understand the details of the
resonance induced by the interfacial waves, a case with
γ = 0.7 is chosen for further investigation. The internal
wave amplitudes are plotted for a range of wave frequencies
around the higher-order resonance frequency Ka ≈ 0.6783.
As illustrated in Fig. 6, as Ka approaches to 0.6783, the
wave amplitude on the interface has been significantly am-
plified and a node, almost independent of the frequency,
occurs at r = 0.62.

More results will be presented at the workshop includ-
ing convergence tests, space-averaged wave amplitude in-
side moonpool, and far-field radiated waves.
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Figure 2: Heave added mass µ33 and damping coefficients λ33
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Figure 4: Dependence of heave damping on density ratio; depth
ratio h1/h2 = 1.0, b/a = 1.2, draft d/h1 = 1.5, a/h1=1.0
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Figure 5: Free surface wave amplitude at r = 0 versus Ka;
depth ratio h1/h2 = 1.0, b/a = 1.2, draft d/h1 = 1.5, a/h1=1.0,
γ = 0.7
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Figure 6: Wave amplitude |ηI | on interfacial surface for different
forcing frequencies; depth ratio h1/h2 = 1.0, b/a = 1.2, draft
d/h1 = 1.5, a/h1=1.0, γ = 0.7


