
Abstract for the 31st Intl Workshop on Water Waves and Floating Bodies, April 3-6, 2016, Plymouth, Michigan, USA 

Wave interference effects on two advancing ships 
Zhi-Ming Yuan 

Dep. of Naval Architecture, Ocean & Marine Engineering, University of Strathclyde, Henry Dyer Building, G4 0LZ, Glasgow, UK 

Zhiming.yuan@strath.ac.uk 

Highlights 

 Development of a method to predict the critical line between the quiescent and wake region. 
 Validation of the theoretical estimation based on large amount of numerical calculations. 
 Calculation of how much in percentage the wave interference effects are predicted. 

Introduction 

For a single marine vessel advancing in calm-water, the 
so-called Kelvin wake can be observed. It is set up by a 
ship in steady motion and to be confined within a wedge 
of semi-angle sin-1(1/3) in deep water, which indicates 
that the free surface can be divided into two regions by 
a critical line: wake region confined within the Kelvin 
angle and quiescent region outside the Kelvin angle. For 
the ships travelling in waves, except the Kelvin wave 
system, there exist two (τ > 0.25, τ = ωeu0 / g, ωe is the 
encounter frequency, u0 is the forward speed, and g is 
the gravity acceleration) or three (τ < 0.25) unsteady 
wave systems due to the oscillation of the ship (Becker, 
1958; Wehausen, 1960).  

 
Figure 1 Radiation wave pattern (real part) induced by unit heave 
motion of a Wigley III hull at Fn = 0.3, τ = 1.32. 

Figure 1 shows a typical radiated wave pattern induced 
by unit heave motion of a vessel with forward speed 
(Yuan et al., 2014). Similar to the steady wave problem, 
the free surface can also be divided into two regions: 
wake region confined within a semi-wedge angle θ and 
quiescent region outside θ. However, for the unsteady 
ship motion, the range of the wedge is not a constant 
value. It varies with the parameter τ (Lighthill, 1967; 
Noblesse, 2001; Noblesse and Hendrix, 1992). For the 
parameter τ > 0.25, there exists a fan-shape quiescent 
region in front of the vessel. As τ increases, the range of 
the fan-shape quiescent region will be expanded. 
Kashiwagi and Ohkusu (1989, 1991) used the 
asymptotic wave contour to estimate the side-wall effect. 
The critical line obtained numerically was presented and 
compared to the results estimated from asymptotic wave 
contour. Faltinsen (2006) derived a wave angle to 

investigate interference between the waves generated by 
each hull of a multihull vessel.  

 

Figure 2 Sketch of ship-to-ship with forward speed problem. 

The main objective of the present study is to investigate 
theoretically and numerically how much in percentage 
the wave interference is expected. In practice, the ship-
to-ship with forward speed problem can well 
demonstrate the wave interference effects. As shown in 
Figure 2, when Ship_a is advancing in waves, a critical 
line can be determined by the asymptotic expressions 
theoretically. It can be expected if Ship_b is entirely 
located in the quiescent region of Ship_a, no 
hydrodynamic interaction is expected. However, the 
theoretical asymptotic expressions of the far-field 
wave pattern is based on a single translation and 
oscillating source point. Due to the 3D effect and local 
non-radiation waves, the critical line could be different 
from that obtained theoretically. In order to obtain this 
real critical line, a massive numerical calculations are 
required to analyze several combinations of parameters, 
including oscillation frequency, forward speed and 
transverse distance between two ships.  

Far-field wave patterns and semi-wedge angle  

Before numerical calculations, a theoretical estimation 
should be established based on the asymptotic wave 
contour. In the present paper, we will use the Havelock 
form of Green function to investigate the far-field wave 
patterns generated by a translating and oscillating source 
in infinite water depth and then establish a rapid 
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estimation of the critical line between the quiescent and 
wake region. The parametric equations with constant 
phase can be expressed as 
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where 2
0 /k g u and (x, y) denotes the position vector 

of the field point on the free surface. ij is the phase, τ 

= ωeu/g, cosi ik   and ki can be written as 
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The quiescent region in Figure 1 and Figure 2 then can 
be determined by the semi-angle θ, which may be 
referred as semi-wedge angle hereafter. At τ < 0.25, this 
semi-angle θ does not exist, since the ring waves could 
cover the entire computational domain. Therefore, we 
are only concerned with the case of τ > 0.25 in the 
present study. The semi-wedge angles of ring waves and 
inner V waves can be written as (Yuan et al., 2015) 
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The values of 5 and 6 can be found in Noblesse and 

Hendrix (1992) as  
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It should also be noted that as i → -τ, the 

corresponding semi-wedge angle for the inner fan wave 
could be expressed as 
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The semi-wedge angles defined by Eq. (3) and Eq. (6) 
are depicted in Figure 3. The semi-wedge angle of the 
outer V waves is also presented. When it refers to ship-
to-ship problem, as shown in Figure 2, two values of τ 
are of particular interest:  τ = 0.272 (the analytical 

expression is 2 / 27 , which can be found in Chen 

(1998)) and τ = 1.62. At τ < 0.272, the semi-wedge angle 
θr > 90°. In this case, the hydrodynamic interactions 
between two ships are inevitable and the minimum 
spacing could not exist. Another critical case is τ = 1.62. 
As τ > 1.62, the semi-wedge angle θr < 19.47°. In this 
case, the hydrodynamic interactions and the minimum 

spacing are dominated by the steady waves. The 
quiescent region could exist outside the Kelvin wedge. 
In the range of 0.272 < τ < 1.62, the quiescent region is 
determined by θr, since θi and θf are confined within the 
semi-wedge angle of the ring waves. 

 
Figure 3 Semi-wedge angles (deg.): θr, ring wave system (τ > 0.25); 
θo, outer V wave system (τ < 0.25); θi, inner V wave; θf, fan wave 
system (τ < 0.25). 

As long as the semi-wedge angle is determined, From 
Figure 2, we can obtain the minimum spacing between 
two ships, at which no wave interference is expected. 
Let’s denote the length of the larger and smaller ships as 
La and Lb respectively, the minimum spacing between 
two ships can be written as 
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where /b aL L  is the ratio of the length of Ship_b to 

Ship_a, and 5 is defined in Eq. (4).  From Eq. (7), it can 

be seen that the dimensionless optimum spacing is only 
determined by δ and τ. 

 
Figure 4 Dimensionless minimum spacing between two advancing 
ships at δ = 0.2, 0.6, 1, 2, and 4. 

Wave interference diagram 

In order to validate the above estimation of the semi-
wedge angle, we used MHydro, which is based on 3-D 
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Rankine source panel method, to calculate the 
hydrodynamic properties of two ship advancing in 
waves. A superposition method is adopted in the 
boundary value problem. The total radiation velocity 
potential is composed of two components: ��, which is 
due to the motion of Ship_a while Ship_b is fixed; ��, 
which is due to the motion of Ship_b while Ship_a is 
fixed.  

The hydrodynamic forces produced by the oscillatory 
motions of the vessel in the six degrees of freedom can 
be derived from the radiation potentials as given in the 
following 
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where A and B are the added mass and damping 
respectively. The superscript ‘aa’ denotes self-induced 
radiation force (radiation force on Ship_a due to the 
motion of Ship_a itself); ‘ab’ denotes external-induced 
radiation force (radiation force on Ship_a due to the 
motion of Ship_b). ηj (j=1,2,…6) is the corresponding 
motion amplitude. The wave elevation on the free 
surface then can be obtained from the dynamic free 
surface boundary condition in the form 
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where Rj  is the real part of j-th model, and Ij  is the 

imaginary part. 

 
Figure 5 Real part of radiated waves for unit heave motion of two 
ships advancing in head waves at d / L = 1, τ = 0.521 and Fn = 0.2. 

The example models involved in numerical study are 
two identical Wigley III hulls (δ = 1) with B / L = 0.1.  
The factors which determine the hydrodynamic 
interaction include several combinations of parameters: 
frequency, forward speed and transverse distance 
between two ships. Let’s firstly examine the wave 
elevation produced by two travelling ships at d / L = 1. 
From Figure 4 we can find the assumptive critical τ = 
0.521 estimated from the far-field asymptotic wave 
pattern. Theoretically, no hydrodynamic interactions are 
expected at τ > 0.521. However, the numerical wave 
patterns in Figure 5 show the inconsistency with the 
asymptotic wave contour. In order to observe this 
inconsistency, we calculated the wave profiles in the 
portside and starboard of the lower ship in Figure 5. This 
is presented in Figure 6. According to the asymptotic 
expression, the wave interference effect diminishes at τ 
= 0.521 and the wave profiles should be symmetrical. 
However, the calculated wave profiles violates the 
theoretical estimation. The identical wave profiles can 
only be found in the fore part of the ship, while the 
discrepancies become evident in the stern area.  

 

Figure 6 Wave profiles at portside and starboard of the lower ship in 
Figure 5. 

The results in Figure 5 and Figure 6 indicate that the 
stationary phase method is not able to estimate 
accurately how the radiated waves propagate to the far-
field and how much interactions are expected between 
two ships travelling in waves. Therefore, an accurate 
estimation of the critical line is desired, which requires 
numerous simulations varying Froude number, 
frequency and transverse distance. A similar approach 
which was adopted by Kashiwagi and Ohkusu (1991) to 
investigate the side-wall effects is introduced here to 
investigate ship-to-ship hydrodynamic interaction 
effects. In Kashiwagi and Ohkusu’s study (1991), the 
side-wall effects are estimated by the difference between 
the hydrodynamic coefficients with side-wall and in the 
open sea. In the present study, we used another 
parameter to estimate the hydrodynamic interaction 
effects. That is the external-induced hydrodynamic 

coefficient ab
ijA or ab

ijB . These components can directly 

reflect how much the hydrodynamic interactions are 
expected, since for the case of single ship, these 
components do not exist.  
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Figure 7 External-induced hydrodynamic coefficients of two 
identical Wigley hulls at d / L = 1 and Fn = 0.2. The results are 
presented in percentage and non-dimensionlized by the 
corresponding values of single vessel in open sea, and the superscript 

‘s’ of s
ijA or s

ijB denotes the single vessel results. 

Figure 7 shows the external-induced components of the 
hydrodynamic coefficients, which is non-
dimensionlized by the single ship results. Strictly 
speaking, there should be 36 inndependent components 
of each set of external-induced hydrodynamic 
coefficients if the two ships are not identical. In order to 
find the region where there is no wave interference, all 
of these components should be zero. In the numerical 
calculation, due to the numerical error, these 
components are impossible to be zero. Therefore, we 
have to set a permissible error and if the calculation 
values are bellow this permissible error, no 
hydrodynamic interaction is expected. In the present 
study, the permissible error is defined as 0.2%. 
Coincidently, the calculated results are quite consistent 
and convergent, even though the different components 
fluctuate with different amplitudes. Theoretically, no 
hydrodynamic interactions are expected at τ > 0.521.  
However, the numerical calculations presented in Figure 
7 show a significant hydrodynamic interaction effect at 
τ = 0.521, and some components even experience an 
increasing trend at τ > 0.521. The hydrodynamic 
interaction effects gradually diminish and the external-
induced hydrodynamic coefficients are convergent to 
the permissible error. At Fn = 0.2, the curves are 
convergent to the permissible error at τ = 0.773.  

We can determine the critical lines showing the 
existence of the hydrodynamic interaction effects as a 

function of Froude number, frequency and transverse 
distance. Results are shown in Figure 8, where x-axis is 

the ��/�/�� = ��/�, y-axis is Fn. The ratio of y to x is 
parameter τ. In the present numerical calculation, as the 
two ships are in the same length (δ = 1), for a given value 
of d / L, the critical parameter τ is unique. Therefore, the 
dashed lines in Figure 8 are linear and they represent the 
critical line estimated from the asymptotic far-field 
wave theory. The solid curves are the calculated critical 
lines, which approach the dotted lines at high frequency, 
where the wavelength is relatively small compared to 
the transverse distance between two ships and the 
theoretical estimation is valid. As the encounter 
frequency decreases, the discrepancies become evident 
and the range of hydrodynamic interaction effects 
expands. The difference between the dashed lines and 
solid curves is due to the effect of the near-field non-
radiation local waves in the vicinity of the ships. 

 
Figure 8 Theoretical and numerical estimation of the critical lines 
showing whether the ship-to-ship hydrodynamic interaction effects 
are expected. 

The permissible error can be various, for example, 1%. 
From Figure 7 it can be found the critical parameter τ 
shifts to a smaller value and the discrepancies between 
the dashed lines and solid curves become small. 
However, the selection of the permissible error must be 
very careful. It should not be very large, for example 5%, 
otherwise the curves of the hydrodynamic coefficients 
will be subject to fluctuations before they tend to 
convergent. On the other hand, the results of different 
components will be inconsistent and individual 
diagrams are require.
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