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Highlights:

• New boundary integral equation is established to improve the coefficient matrix of the lin-
ear system when applying boundary element method. Numerical tests for an inner domain
problem was done and results are compared with analytical solution.

• Program for evaluating hypersingular integral is implemented and results are validated.

• An indirect method for evaluating free term coefficients is given for both inner domain and
outer domain problems.

1. Introduction

Boundary Element Method(BEM) is widely used for studying wave-structure interaction problems.
In most cases, the boundary integral equations(BIEs) are established using Green’s second identity.
By inserting source points at different node locations, the Laplace equation solving problem was
turned into solving a linear system.

For an N-node mesh, the N × N coefficient matrix formed by discretizing the boundary us-
ing BIEs is not fully diagnoal dominant since Dirichlet(first type) boundary condition is given at
the free water surface while Neumann(second type) boundary condition is given at the body sur-
face. Kitagawa (1991) has proved that when N is large, stability of the solution will be deteriorated.

In this study, we proposed a diagonal dominant method by coupling the normal integral equation
with a hypersingular integral equation. Numerical tests are performed to check the results of the
new method.

2. Boundary Integral Equation

The boundary integral equation commonly used is derived from Green’s second identity:

lim
ε→∞

∫∫
S+Sε−eε

(
∂G(x,y)

∂n
φ(x)− ∂φ(x)

∂n
G

)
ds = 0 (1)

After applying the limit to the integration over an infinitesimal sphere around a source point,
Eqn(1) becomes:

α · φ(y)−
∫∫

SB

φ(x)
∂G(x,y)

∂n
ds(x) +

∫∫
SF

G(x,y)
∂Φ(x)

∂n
ds(x)

=−
∫∫

SB

G(x,y)
∂φ(x)

∂n
ds(x) +

∫∫
SF

φ(x)
∂G(x,y)

∂n
ds(x) (2)
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α is related to solid angle. α’s are much larger than off-diagonal elements for coefficient matrix
of linear system and they are major contributors to the diagonal elements. However, this is only
true for body surface nodes since φ(y) at the free water surface is given by boundary conditions
and this term will be moved to right hand side of the equation. Hence, the new boundary integral
equation is constructed by applying ∂/∂y3 operation to both sides of Eqn(1):

lim
ε→∞

∫∫
S+Sε−eε

(
∂2G(x,y)

∂y3∂n
φ(x)− ∂φ(x)

∂n

∂G(x,y)

∂y3

)
ds = 0 (3)

Guiggani(1992) gave an expanded form of Eqn(3)1:

C33 · φ,y3(x)|x=y −
∫∫

SB

Φ(x)
∂2G(x,y)

∂y3∂n
ds(x) +

∫∫
SF

∂G(x,y)

∂y3

∂Φ(x)

∂n
ds(x)

=−
∫∫

SB

∂G(x,y)

∂y3

∂Φ(x)

∂n
ds(x) +

∫∫
SF

Φ(x)
∂2G(x,y)

∂y3∂n
ds(x)

− [a3 · φ(y) + C32 · φ,y2(x)|x=y + C31 · φ,y1(x)|x=y] (4)

Similarly to Eqn(2), the coefficients a3, C31, C32, C33 arise from the integration over an infinitesimal
sphere around a source point. The evaluation of these coefficients will be elaborated in later section.
Besides, integration involved kernel ∂2G/∂y3∂n is hypersingular and exposes more mathematical
challenge for evaluation. If C33 is large enough, we can get a new diagonal dominant coefficient
matrix for the linear system by combining Eqs(2) and (4).

3. Evaluation of Hypersingular Integral

Evaluation of hypersingular integral in Eqn(4) on an element with source point can be mapped to
a parametric plane, the integration is converted to:

Ie =

∫∫
Se−eε

f(x)
∂2G(x,y)

∂y3∂n
ds =

a∑
fa
∫∫

Se−eε
Na(ξ)

∂2G(x(ξ),y)

∂y3∂n
|J(ξ)|dξ1dξ2 (5)

=

a∑
fa
∫ θ2

θ1

∫ ρ̂(θ)

α(ε,θ)
F (ρ, θ)dρdθ (6)

Guiggani (1992) expanded each component of F (ρ, θ) in Eqn(6) around the source point using
Lawrence expansion to O(ρ−2) like Eqn (7). With some extra mathematical work, the three inte-
grations in Eqn (7) can be evaluated using common methods.

F (ρ, θ) = F−2 · ρ−2 + F−1 · ρ−1 + F0 +O(ρ−3) (7)

Gao (2010) developed a more general method. Similar to Eqn(5), the hypersingular integral on an
element is given by Eqn(8) and can be turned into a line integral along the edges of the element
like Eqn(9).

Iea =

∫
Se

f̄(x,y)

rλ(x,y)
ds =

∫ 1

−1

∫ 1

−1

f̄(x(ξ),y)

rλ(x(ξ),y)
|J(ξ)|dξ1dξ2 (8)

=

∫
L

1

ρ(x,y)

∂ρ(x,y)

∂n′
F (x,y)dL (9)

1Unbounded term and some limit notations are neglected for simplicity.



where

F (x,y) = lim
ρα(ε)→0

∫ ρ(x,y)

ρα(ε)

f̄(x̂,y)

rλ(x̂,y)
Jρdρ (10)

and r = ||x − y||2 , ρ(x,y) = ||x − y||2, n′ is the normal vector on the square in parametric
plane pointing outward. Evaluation of Eqs (9) and (10) will not be elaborated in this abstract, but
the essential idea is to convert the non-singular part of integrand to a power series which can be
used later for eliminating the singularity.

4. Evaluation of Free Term Coefficients

For an inner domain problem, the coefficients in Eqn(4) can be evaluated using an indirect method.
By assuming φ(y) = 1 , φ(y)x = 0 , φ(y)y = 0 and φ(y)z = 0, we can obtain:

a3 =

∫∫
S

∂2G(x,y)

∂y3∂n
ds(x) (11)

Again, by assuming φ(y) = x , φ(y)x = 1 , φ(y)y = 0 and φ(y)z = 0, we can obtain:

C31 =

∫∫
S

[
∂2G(x,y)

∂y3∂n
x− ∂G(x,y)

∂y3
n1]ds− a3y1 (12)

Similarly, we can evaluate C32 and C33. For an outer domain problem, the indirect method is
not applicable due to the integration cannot be carried out over a complete domain conveniently.
However, by looking at the analytical expression of these coefficients, the following relationships
can be established between the coefficients of the inner and the outer domains at the waterline:

ai3 + ao3 = 0 Ci31 + Co31 = 0

Ci32 + Co32 = 0 Ci33 + Co33 = 0.5 (13)

For other free surface nodes, C31 = 0, C32 = 0, C33 = 0.5 and a3 = 0. Hence, the coefficients for
outer domain problem can be evaluated by calculating the coefficients for the inner domain.

5. Numerical Tests

The evaluation program of hypersingular integral is tested for two different cases. The results are
compared with Guiggani’s results(1992) and analytical results. The validation results are listed in
Table. 1.

(a) Flat Element (b) Curved Element

Figure 1: Hypersingular integral validation cases



Table 1: Validation of hypersingular integrals

Flat Element
Point Our code Guiggani Analytical
a -5.74515 -5.74924 -5.74937
b -9.15700 -9.15744 -9.15459
c -15.32742 -15.30541 -15.32850

Curved Element
Point Our code Guiggani Analytical
a -0.343923 -0.343804 -0.343807
b -0.497122 -0.497091 -0.497099
c -0.876357 -0.877106 -0.877214

The new BIE is tested for a box domain. φ is given on the top face and ∂φ/∂n is given on the
other faces as boundary condition. The potential over the domain is set to be Eqn (14). Results
are shown in Figure 2.

φ(x) =
cosh k(z + d)

cosh(kd)
eikx (14)

(a) Analytical Result (b) Numeral Result (c) Potential at Surface

Figure 2: Comparison of results for an inner domain case

6. Summary

In this paper, we established new boundary integral equations for BEM to get diagonal dominant
coefficient matrix. A numerical test of inner domain problem was carried out to validate if the new
method is working properly. Further extension to time domain problem will be presented at the
workshop.
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