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Introduction

Overwash is the process in which waves force water onto the surface of a body that is otherwise
not fully submerged. It occurs in wave interactions with thin floating plates due to their
small freeboards. For example, when experimentally investigating water wave transmission by
an array of thin floating plates, Bennetts & Williams (2015) reported overwash in laboratory
experiments of regular incident waves interacting with an array of thin floating wooden disks.
They noted shallow overwash for relatively moderate incident amplitudes, and deeper and more
energetic overwash for larger incident amplitudes. Moreover, they showed that the occurrence
of strong overwash was correlated to the array transmitting significantly less wave energy than
predicted by linear potential flow theory.

Skene et al. (2015) proposed a 2D (one horizontal dimension and one depth dimension)
mathematical model of overwash of a thin floating plate. They separated the overwash domain
from the surrounding water and plate domain; applying linear potential flow theory to the latter
domain, and the nonlinear shallow water equations to the former. The potential flow model
prediction of the wave elevation above the plate and velocity there was used to force the shallow
water equations.

Further, they compared the model predictions to measurements made during laboratory
experiments. In these experiments, thin floating plastic plates were subjected to regular incident
waves with steepnesses ranging from ka = 0.04 to 0.15 and wavelength to plate length ratios
from 0.56 to 1.51. A depth gauge placed at the centre of the upper surface of the plate was used
to measure the overwash depth. The motion of the plate was also measured, and Meylan et al.
(2015) had earlier shown that linear potential flow theory accurately predicts this motion.

Skene et al. (2015)’s model accurately predicted the overwash depth signals for relatively
low incident steepnesses and short wavelengths, for which the mathematical model predicted a
mean overwash depth of less than approximately 2 mm. However, for higher incident steepnesses
and longer incident wavelengths, the model became inaccurate and overpredicted the overwash
depth by a factor of up to three. The likely causes of the loss of accuracy were hypothesised to be
that: (i) the shallow water equations neglect turbulence, which was visible in the experiments
for the largest incident amplitudes; (ii) the model lacks back-coupling from the overwash to
the plate and surrounding water; and (iii) the shallow water equations do not model the wave
breaking that occurred in the experiments when bores created at the leading and trailing plate
edges collided.

Here, the model is applied to the problem of overwash of a step that has the height of the
undisturbed water depth. The simplified geometry removes any errors created by (iii), and thus
provides a direct means to test the impacts of (i) and (ii). The model predictions are compared
to data from computational fluid dynamics (CFD) models of the problem.
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Figure 1: Schematic of overwash step problem (not to scale).

Mathematical model

Figure 1 shows a schematic of the problem. The geometry is two dimensional, with locations
defined by the Cartesian coordinate system (x, z). Here, x is the horizontal coordinate, and z
is the upwards pointing vertical coordinate. The origin is located at the upper corner of the
step. Initially, water occupies the domain x < 0 and −H < z < 0. The vertical face of the step
is located at x = 0 and −H < z < 0. Its upper surface is x ≥ 0 and z = 0. Overwash is forced
by a monochromatic incident wave.

For x < 0, it is assumed that the water is irrotational, incompressible and inviscid. As the
waves tested are small perturbations about the equilibrium depth, the free surface is linearised.
Thus, this water is modelled with linear potential theory using a velocity potential, φ(x, z, t),
where t is time and the gradient of φ represents the water velocity field. The motion in this
region is assumed to be time-harmonic. Hence, the velocity potential is expressed as φ(x, z, t) =
Re{φ̄(x, z)e−iωt}, where ω is some prescribed frequency, and φ̄(x, z) is the velocity potential
in the frequency domain. The velocity potential satisfies the standard governing equations for
surface gravity water waves. These are

∇2φ̄ = 0 in −H < z < 0 and x < 0, (1)

∂zφ̄ = 0 on z = −H, and ∂zφ̄− ω2g−1φ̄ = 0 on z = 0, (2)

where g ≈ 9.81 m s−1 is the acceleration due to gravity. The vertical face of the step bounds
the right hand-end of the potential flow domain. A no-penetration condition is applied at this
boundary, i.e. ∂xφ̄ = 0 on −H < z < 0 and x = 0.

The velocity potential is the sum of an incident wave potential, φ̄I , where the incident wave
travels in the positive x-direction (towards the step), and a reflected wave potential, φ̄R, where
the reflected wave travels in the negative x-direction (away from the step). The incident wave
potential is

φ̄I =
ageikx cosh {k(z +H)}

iω cosh (kH)
, (3)

where a is the incident amplitude and the wave number k is the real positive root to the
dispersion relation k tanh(kH) = ω2/g. The reflected wave potential can be calculated explicitly
(details omitted).

At the free surface, the wave elevation and horizontal velocity are given by η(x, t) = −∂tφ/g
and ux(x, z, t) = ∂xφ, respectively, where η is the free surface height and ux is horizontal the
velocity at z = 0. At the interface with the overwash, they are η(x = 0, t) = 2a cos (ωt), and
ux(x = 0, z = 0, t) = 0.

Neglecting turbulence and viscosity, the nonlinear shallow water equations are used to model
the overwash, which are

∂t(h) + ∂x(uh) = 0 and ∂t(uh) + ∂x
(
u2h+ 0.5gh2

)
= 0, (4)



where h(x, t) is the height of the overwash water and u(x, t) is its depth averaged velocity in
the x-direction. The shallow water equations require numerical solution. The spatial derivative
is explicitly discretized using the finite volume method of Kurganov & Tadmor (2000), which is
presented for the shallow water equations in Skene et al. (2015). The solution is time stepped
using the RK2 method.

At the interface between the shallow water and the potential flow, x = 0, the height and
depth averaged horizontal velocity of the overwash are set to be the wave elevation and horizontal
velocity predicted by the potential flow, i.e. h(x = 0, t) = 2a cos (ωt), and u(x = 0, t) = 0. Note
that, although the potential flow model predicts zero velocity here as the effect of overwash
is assumed to be negligible upon it, the shallow water equations still allow water to flow onto
and off the step here. Downstream in the overwash, the conditions h(x = 2 m, t) = 0 and
u(x = 2 m, t) = 0 are used to approximate water running off towards infinity.

CFD models

Two CFD models are created using the open-source software OpenFOAM. Each test case has
the initial condition of still water with its free surface located along the line made by z = 0.
An upstream wave maker region is used to generate the incident wave according to Stokes fifth-
order approximation. The solution to the two-phase Navier-Stokes equations are computed on
a two-dimensional mesh with initial grid spacing of 0.1 mm using a customized version of the
interFoam solver. The solver uses the finite-volume method to solve the governing equations on
unstructured meshes. The volume-of-fluid method is used to track the air-water interface.

The CFD model was tested for a slip and no-slip boundary condition at the water basin’s
boundaries. The slip condition is consistent with the mathematical model. The no-slip condition
tests the effects of a boundary layer.

Results

The models were run for the incident wave frequency ω = 2.5π rad s−1, which corresponds to
the wavelength 2π/k ≡ λ = 1.0 m, and steepnesses ka = 0.031, 0.074, 0.063, and 0.094. Both
models are analysed once the overwash becomes quasi-time-harmonic. Time offsets are set such
that t = 0 corresponds the minimum depth at x = 0+, i.e. the interface viewed from the edge
of the shallow water domain.

Figure 2 shows the depth averaged velocity and depth signals over three wave periods at
x = 0+ and x = 100 mm for a wave of amplitude a = 10 mm. The results for this amplitude are
representative of the other wave amplitudes tested. The three models have similar depth and
velocity signal shapes at each position, however, the CFD models have a slightly skewed velocity
at x = 0+ and show some roughness due to turbulence downstream. The slip and mathematical
model share similar vertical offsets, however, the no-slip model’s signals are vertically shifted to
be slower and deeper at x = 100 mm. All three signals share similar wave amplitudes (maximum
minus minimum values) and periods (peak to peak time differences).

Figure 2 also shows the mean depth over three wave periods for each incident wavelength at
x = 0+ and x = 100 mm. This figure shows close agreement across all wave amplitudes at the
interface. Downstream however, while there is strong agreement between slip and mathematical
model, the no-slip model differs systematically by approximately 1.5 mm in depth. Although
not shown, there is near perfect agreement for velocity at x = 0+ but a systematic error of
0.07 m s−1 downstream between the no-slip and other models.
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Figure 2: Depth (top left and centre) and depth averaged velocity (bottom left and centre)
signal comparisons of slip (dashed), no-slip (dot-dashed), and mathematical model (solid) at
x = 0+ (left) and x = 100 mm (centre) for a = 10 mm. Also, mean depth for varying amplitude
comparisons at x = 0+ (top right) and x = 100 mm (bottom right)

The source of these systematic errors is shown in Figure 3. In this figure the horizontal
velocity of the slip, no-slip, and mathematical model are plotted against their depth for a
wave of amplitude a = 5 mm at t = 0.2 s. The plot shows that while the slip model has
an approximately uniform velocity profile, like that of the mathematical model, the no-slip
boundary condition creates a boundary layer approximately 2.5 mm thick.
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Figure 3: Horizontal velocity profiles
of slip (dashed), no-slip (dot-dashed),
and mathematical model (solid) at
x = 100 mm for a = 5 mm.

Conclusions

• The one way coupling captures the coupling in the fully
coupled CFD model well.

• Turbulence in the overwash does not appear to create
large differences between models in terms of the mean
depth and horizontal velocity up to 100 mm downstream.

• The models without boundary layers systematically pre-
dict smaller overwash depths and larger mean horizon-
tal velocities than the model with a boundary layer.
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