
The 31st International Workshop on Water Waves and Floating Bodies

Large Wave Groups - Their Probability, Profiles, and Mean
Offsets

Harleigh Seyffert, Armin Troesch
Department of Naval Architecture and Marine Engineering, College of Engineering, University of Michigan

harleigh@umich.edu, troesch@umich.edu

Introduction

The definition and classification of wave groups is a strong area of current research, particularly due to
the influence of wave groups on extreme dynamic events. The classical wave group definition constitutes of
some combination of threshold crossings (envelope or distinct peaks), narrow band or broad band spectral
assumptions, Markov chain processes for large successive wave heights, or Boccotti’s ‘quasi-deterministic’
theory [1]. Bassler et al. [2] and Kim and Troesch [3] suggested relaxing the successive threshold crossing
requirement to allow for the more probable wave group sequence which may include some minor down cross-
ings. Such groups can still cause extreme system response through resonant excitation such as parametric
roll [3]. Seyffert, Kim, and Troesch [4] offered a mathematical formulation of wave groups, which will be
used here to examine a singular time series taken from the Pt. Reyes Buoy [5]. We consider the spectral
statistics of this 30-minute time series and compare it with the mathematical wave group formulation, and
then calculate peak-to-trough statistics for comparison with a second-order Stokes wave.

Mathematical Formulation

As in [4], a mathematical formulation of a wave group is used in this work to compare with physical ocean
data. Specifically for this paper, we consider a single time series and delve deeper into intriguing issues
raised by that pervious work. The full derivation of the mathematical wave group is developed in [4], and
a summary is given here. We start with the definition of a Gaussian derived process, as first defined by [3],
with η(t) as wave elevation at a specific spatial coordinate. Here, τ is a defined period of interest and k is
the wave group index.

zk(t) =
k

∑
p=1

η(t + (p − 1)τ) (1)

In order to relate large (i.e. extreme) values of zk(t), defined as ẑk, to wave groups, it was necessary
to consider the conditional expected value of a normal, zero mean, function, y(t), that is, E[y(t) ∣ y(to) =
ŷ, ẏ(to)=0]. For a stationary process, to is arbitrary and can be shifted to to = 0 without loss of generality.
Since y(t) is Gaussian with covariance r(τ), it has been shown (e.g [1, 6, 7, 8, 9]) that as ŷ →∞,

E[y(t)∣y(0) = ŷ, ẏ(0) = 0]→ ŷ
r(t)

r(0)
(2)

Using Fourier Transform theory, along with the derived process and the Wiener-Khinchine relations, the
mathematical formulation for the expected shape of the wave group conditioned on large values of ẑk has
been derived in [4]. In that work, we show that the wave elevation expected value, conditioned on a maximum
of the derived process at to, forms a wave group of k waves, proportional to the sum of k autocorrelation
functions of the wave elevation, separated in time by (p − 1)τ , p = 1 . . . k. The constant of proportionality
is the value of the maximum of the derived process, with group index k, divided by its variance, σ2

zk . The
final result is given in Eq. 3 below:

E[η(t)∣zk(0) = ẑk, żk(0) = 0] =
ẑk

rzkzk(0)

k

∑
p=1

rηη(tp) =
ẑk
σ2
zk

k

∑
p=1

rηη(tp) (3)

As shown in [4], the scaling factors can be estimated (Eq. 4 - 5). The result is a good match between
theory, Monte Carlo simulations, and the physical data. Spectral moments are given from the derived process



spectral density function, Szkzk(ω) as below. The most probable extreme maxima, ẑk, for a given exposure
time, T , in seconds, is then given (e.g. [10]) using the zero-crossing period, To.

mzkn
= ∫

∞

−∞
dω ωn Szkzk(ω) (4)

ẑk =
√
mzko

[2 ln(
T

2π

√

mzk2
/mzko

)]

1
2

(5)

Identification of Wave Groups in Time Series Data

As in earlier works by the authors [4], [11], data is taken from the Pt. Reyes Buoy operated by the Coastal
Data Information Program, UC San Diego [5]. For this workshop, a single 30-minute wave record from
January 20, 2010 15:09:00 is considered. The selected time series is one ensemble sample that is part of a
larger “bin” of seventy 30-minute time series [4], and has the largest derived process value for a wave group
of 8 waves of all seventy time series in the bin. We denote the maximum of the derived process of this
particular time series ẑ8(TS), to later compare with the mean of the derived process maxima of all seventy
time series, ẑ8(M). Here, we will also compare our single sample time series with ensemble statistics for this
bin (Hs = 7.1m and Tmodal = 14.88s). Then, by forming the ratio of the value of ẑ8(TS) to the mean ẑ8(M),
we can state that the individual time series of the bottom insert of Fig. 1 is representative of a rare wave
group with Probability of Nonexceedence PNE = 0.980 when selected from a sample set of like wave groups
taken from 30 minute records.

In the top insert of Fig. 1, wave groups of 8 waves for all 70 time series, identified by a maximum in the
derived process z8(t), are shifted without loss of generality to 200 seconds. The ensemble average of all time
series is overlaid. The middle inset shows the temporal ensemble average overlaid with the ensemble average
of the 70 scaled, shifted autocorrelation functions based on Eq.(3). The bottom inset shows the time series
from January 20, 2010 15:09:00, overlaid with the scaled, shifted autocorrelation function (using Eqs. 3, 4
and 5) of that same time series.

As shown in Tab. 1, theory overestimates the empirical data for both the January 20, 2010 15:09:00 time
series and the ensemble average by 3 to 15%. The 15% difference in (●)TH/(●)TS may not be significant
since individual samples from an ensemble will be part of a distribution with non-zero variance.

Table 1: Nondimensional scale factors based on theory (TH) (i.e. Eq. 4 and 5) and empirical time series (TS) for k
= 8. Separation period τ = Tmodal = 14.88s. Comparing Time Series January 20, 2010 15:09:00 and Ensemble Wave
Group

Wave Group (k = 8)
√
mzko

/k (ẑk/
√
mzko

)TH (ẑk/
√
mzko

)TS
(ẑk/√mzko

)TH

(ẑk/√mzko
)TS

January 20, 2010 15:09:00 0.253 4.2982 3.7151 1.1569
Ensemble Average 0.253 3.1587 3.0565 1.0334

Peak to Trough Variation and Mean Offset

We now are in a position to examine the single wave group time series for specific water wave characteristics.
The wave group with wave index k = 8 is defined in Fig.1 bottom insert, as starting at t = 200s and continuing
for 7.5 × Tmodal seconds. The wave group duration is selected such that 8 successive peak-trough pairs can
be identified. Here we look at only the average wave group crest maximum (crest height), the average wave
group minimum (trough), the ratio of crest to height, and the mean offset for 200s ≤ t ≤ 309.8s. The results
are shown in Table 2.

Comparisons can now be made with the average offset as predicted by second order Stokes waves versus
the average offsets predicted by Eq. 3 and the average offset of the smaller ensemble average. The second
order Stokes offset is defined in Eq. 6. Deep water approximations are assumed for simplification (the
Pt. Reyes buoy is located 24.7 miles west of Pt. Reyes, CA in 1804 feet of water [5]). For the Stokes
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Figure 1: Comparison of temporal average and theoretical wave group formulation from Eq. 3 with scale
factors from Eq. 4 and 5. Ensemble Average based on 70 thirty minute wave records, Hs = 7.1m, Tmodal =
14.88s.

offset, we use the mean wave amplitude, H/2, from the physical wave record as the wave amplitude and the
peak modal period (Tpeak) to define the wave number κ, where for the linear deep water dispersion relation
κ = 4π2/(gT 2). For a mean wave amplitude of H/2 = (4.714 + 3.758)/2 = 4.23m, the Stokes offset would be
approximately 0.164m. This is approximately 1/3 of the offset measured in the time series or 1/3 of the
offset predicted by the theory (Eq. 3, 4, and 5) for a similar mean wave height. It is interesting that the
mathematical wave group formulation captures the mean offset inherent in natural water waves much more
closely than a Stokes second order wave, at least for this times series and wave group. Also of significance
is that the mathematical wave group formulation [4] is based on linear operator theory but still manages to
capture the mean offset, which is often thought to be a second order effect.

Stokes crest/trough ≈ ±
H

2
+
kH2

8
= ±

H

2
+
H2π2

2gT 2
(6)

Table 2: Comparison of (absolute value) Mean Peak and Trough Values for January 20, 2010 15:09:00, Autocorrelation
Function Wave Group (k = 8) from January 20, 2010 15:09:00, and Ensemble Average of 70 Samples.
Fig. 1, 200s ≤ t ≤ 309.8s.

Mean Peak Mean Trough Peak-Trough Mean Mean
Value [m] Value [m] Ratio Amplitude [m] Offset [m]

January 20, 2010 15:09:00 4.714 3.758 1.254 4.23 0.481
Eq. 3, 4, 5 2.708 2.170 1.248 4.23* 0.478*

Stokes Wave - - - 4.23 0.164

*Note, the mean amplitude and offset, based on Eq. 3, 4, and 5, and ensemble average of the seventy



records are scaled up to match the mean amplitude of the January 20, 2010 15:09:00 record.

Conclusions

In this paper, a mathematical formulation of wave groups developed by Seyffert, Kim, and Troesch [4]
was used to investigate properties of a single physical time series record from the Pt. Reyes Buoy. The
mathematical wave group formulation was compared to the individual time series and compared with an
ensemble average of seventy representative 30-minute time series. Average peak and trough values were
compared with a Stokes second order wave. The mathematical wave group formulation captured the mean
offset seen in nature more closely than the Stokes second order model. More research is being conducted
to better understand the phenomenon. Most interesting is the ability of the wave group formulation based
on the Gaussian derived process to capture the mean offset present in natural waves, often thought to be a
second order effect. Research is being done is answer the questions identified by this, and is already yielding
promising results. In summary, this wave group formulation has shown close agreement with oceanographic
measurements and is a promising new method of considering large wave group properties.
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