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Highlights
• Free surface flows are computed in a tank in forced motion,
• Fully nonlinear free surface problems are solved,
• Extremely accelerated localized free surface motions are simulated.

1) Introduction

The literature is rather rich regarding the simulation of nonlinear free surface flow in a tank submitted
to a forced motion as long as the response is weakly nonlinear. For example, the Finite Difference
Method used by Frandsen (2004) among others shows the ability to catch the spectral content of the
wave pattern. The abundant contributions by Faltinsen, Rognebakke and Timokha (2000 and later) also
give access to weakly nonlinear of the free surface responses. When the free surface deformation becomes
more pronounced, the literature is rather poor. We propose here some new insights into that problem
formulated in potential theory. The physical configuration is sketched below
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The total velocity potential Φ describes the flow in a coordinate system attached to earth. It verifies the
following boundary value problem



















∆Φ = 0 in the fluid domain

Φ,t + 1
2
~∇2Φ + g

(

~Y · ~EP − h
)

= 0 P on the free surface
d
dt

~EP = ~∇Φ P on the free surface

Φ,n = d
dt

~EM · ~n M on the wall of the tank

(1)

where ~n is the unit normal vector on any considered surface. As it is formulated we could solve that
problem directly with standard two-dimensional Panel Method. In practice we use here the desingularized
technique as described in Cao et al (1991) or Tuck (1998). In order to optimize the numerical scheme, the
total potential Φ is split into three components. The first two account for the forced motion. The third
(noted ϕ) describes the flow motion in a coordinate system attached to the tank. It fulfills a homogeneous
Neumann boundary condition on the tank walls. With the notations introduced in the figure above, a
time differential system is written from a Lagrangian transport of ϕ on Lagrangian markers (x, y) attached
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(2)

The velocity potential Ω is known as the Stokes-Joukowski potential (see Joukowski, 1885) and the
corresponding Boundary Value Problem is purely of Neumann type

{

∆Ω = 0 in the fluid domain

Ω,n = (~k ∧ ~AP ) · ~n all over the fluid boundary
(3)

By using a desingularized technique, both ϕ and Ω are represented as a finite set of singularities (Green
function of Rankine type). They are located outside the fluid domain and at some distance from the
actual free surface. The convergence of the computation of Ω is checked with the exact linear solution
for a rectangular tank. That solution is given in Faltinsen et al (2000) among others. Attention must be
paid on the choice of the desingularizing distance. As explained in Scolan (2015), convergence criteria
for linear cases (non moving boundary) differ from the criteria for nonlinear computations.

When the tank is shaked with stronger forced oscillations, the free surface is much more distorted and
the problem becomes less standard. In fact due to either numerical difficulties or restrictions in terms of
computational resources, few numerical simulations in potential theory are reported in the literature.

2) Breaking wave due to a simple forced motion
Based on the experiments by Karimi (see Karimi et al, 2015), we perform numerical simulations with a
very simple tank kinematics. The figure below shows a typical horizontal motion for a tank which may
have chamfers or not
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By tuning the factors Xc and Tc, we can simulate a large range of overturning crest configurations. That
is shown in the figures below where the successive profiles of the free surface are plotted for different
choices of Xc and Tc
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In the last left figure, nothing exotic occurs. The analysis of the kinematics along the free surface is
illustrated in the figure below for this ”soft” case
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The left figure shows the whole free surface profiles and for each of them the location of the highest

velocity amplitude |~∇ϕ| in the coordinate system attached to the tank. The right figure collects those
data and plot the time variation of that maximum velocity. It is worth noting that at the very end the
velocity grows almost linearly. It is hence possible to extrapolate the velocity and the time at which
the wave would impact the wall even if the present computations cannot reproduce that. By doing such
parametrical study, much knowledge can be gained about the correlation between the tank kinematics
and the resulting fluid kinematics. It is clear that linear or weakly nonlinear approaches cannot predict
such results.

The most interesting cases are those for which a sudden localized free surface growth occurs. For the
first three cases illustrated above, it is observed that when the overturning crest develops –thus leading
to the possible entrapment of a gas pocket– a point of very strong kinematics grows along the free surface
at some intermediate distance between the crest and the wall. The analysis of the kinematics along the
free surface is illustrated in the figure below for one of these ”exotic” cases
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In the present case, at the point where the free surface locally swells, the acceleration of the fluid is much
higher than during the previous phase. That phenomenon is identified as a double crest phenomenon
but the shape of the wave also reminds the shape of a lobster claw. Experimental observations have
been done by Brosset (2015) and confirm the existence of such outgrowth. Further experimental and
numerical studies should lead to an explanation of that occurrence since the resulting loadings might be
substantially underestimated if such phenomena were ignored. Currently it is not clear whether or not
this phenomenon is associated with the forced motion of the tank. A first test consists in restarting a
simulation with the solutions (free surface position and distribution of velocity potential) when the free
surface reaches its maximum of deformation during the first half cycle of oscillation of the tank knowing
that if we force the tank until the end, we would have a double crest. The following figures show the
time variations of the fluid energies. At time t = 1.39s the potential energy is maximum. At that time,
we extract the free surface position and the corresponding distribution of velocity potential (the initial
kinetic energy is slightly not nil).
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Then we release the dynamical system evolving without any forcing of the tank. The successive free
surface profiles are plotted globally (middle figure) and locally at the left wall (right figure). We do not
observe the appearance of a ”lobster claw”. Another test is performed by restarting a simulation with
the solutions (free surface position and distribution of velocity potential) early before the appearance
of the local growth but during the first phase of moderately accelerated crest. The chosen instant is
t = 1.73s and we release the dynamical system evolving without any forcing of the tank. The successive
free surface profiles are plotted globally (left figure) and locally at the left wall (right figure).
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We do observe the appearance of ”lobster claw”. As a consequence there is not a strong evidence of the
correlation between the forced motion and the appearance of ”lobster claw”. The next figure compares
the time variation of the maximum velocity when either a double crest appears or not. Before the
double crest appears, the typical fluid accelerations (slopes of the curves) is the acceleration of gravity
[7m/s2, 10m/s2]. For the three cases where the double crest appears, the fluid acceleration increases with
a factor that may reach 35.
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When the late restart is performed (at t = 1.73s), the corresponding time variation of the maximum
velocity matches quite well the original ones starting from rest. More numerical experiments are necessary
to confirm that result. Preliminary comparisons are made with the code CADYF, a Navier-Stokes solver
developed at Polytechnique Montréal (see Charlot et al, 2012). The agreement (not illustrated here) is
fairly good. There are hence reasons to think that Potential Theory will be a good frame to describe
that new phenomenon.
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