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Summary 
 

A new expression is derived for the nonlinear surge force acting on a vertical circular cylinder in irregular 

waves. A recently developed fluid impulse theory for the nonlinear loads on floating bodies is invoked to 

express the total force as the time derivative of a Froude-Krylov, diffraction and free surface impulse. The 

impulses involve integrals of the incident and diffraction velocity potentials over the body boundary and 

an internal waterplane area which coincides with the instantaneous position of the ambient wave profile. 

The evaluation of the partial time derivative and gradient of the disturbance potential over the body 

boundary is circumvented. An expression for the nonlinear force for moderate wavelengths leads to an 

efficient computational method. For wavelengths large compared to the cylinder diameter the nonlinear 

force reduces to GI Taylor’s formula with a quadratic and a cubic point load at the waterline. 

 

Fluid Impulse Theory 
 

The Figure illustrates a vertical circular cylinder fixed in space, an ambient wave profile and the calm 

water level coinciding with the z=0 plane. The positive z-axis points upwards and the unit normal vector 

points inside the cylinder. The wetted surface under the ambient wave profile is SB(t) the instantaneous 

ambient wave surface exterior to the cylinder is SI(t) and its portion inside the cylinder is SW(t). The water 

density is ρ and the acceleration of gravity is g. 

 

 

 

The fluid impulse theory developed by Sclavounos (2012) expresses the nonlinear surge force on the 

cylinder as the sum of the time derivative of Froude-Krylov, diffraction and free-surface impulse 

components 
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Denote by 
I  and  the incident and diffraction velocity potentials, respectively. The Impulse Froude-

Krylov force is given by 

 

 

 where Gauss’ theorem was invoked. The Impulse Diffraction force is given by 

 

 

 The free surface Impulse Force in the x-direction takes the form 

 

where ζ is the diffraction wave elevation about the ambient wave profile. Terms of cubic order in the 

wave steepness ε are neglected in (3). A surface integral over a semi-spherical surface at infinity 

involving the inner product of the gradient of the incident and diffraction potentials may be shown to 

vanish. At a finite time the diffraction potential at infinity behaves like a 3D dipole and its gradient 

decays like 1/R
3
. This decay offsets the area of the sphere which grows like R

2
. 

Invoking the linear free surface condition we obtain to leading order in the wave steepness: 

 

 

Introducing (4) in (3), evaluating the integrals over the z=ζI plane with errors of O(ε
3
) and interchanging 

the time derivative with the surface integral, it follows after some simple algebra that 

 

 

Invoking the linearized free surface condition of the incident and diffraction potentials in the first term of 

equation (5) we obtain 

 

 

Since the z-derivative is equal to the normal derivative on the z=ζI plane, the first term in the right-hand 

side of (6) may be reduced to an integral over the body boundary by invoking Green’s identity for the 

potentials 1 2, /I x       over a closed surface consisting of the z=ζI plane, the body surface and a 

sphere at infinity with radius R. Over the sphere the dipole-like diffraction potential decays like 1/R
2
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offsetting the R
2
 growth of the surface of the sphere. The remaining integral involves the oscillatory 

incident wave potential which as R  decays like R
-1/2

.  

Following the application of Green’s theorem and invoking the body boundary condition 

/ /In n       on SB, it follows that 

 

The force expressions (1) and (2) involve no linearization assumptions. In the force expression (7) terms 

of cubic order in the wave steepness were omitted. The ambient waves are assumed to be irregular and 

expressions (1), (2) and (7) are valid for finite values of Ka, where K is a characteristic wavenumber and 

a is the cylinder radius. 

The characteristic wavelength in a seastate is often large relative to the cylinder diameters of offshore 

structures and wind turbines. In such cases Ka is a small parameter and the diffraction potential near the 

cylinder may be approximated to leading order by the 2D cross-flow potential  

 

 

Introducing (8) in (7) and expressing / x   in polar coordinates, the second term in the right hand side,

,

FS

X FSF , which involves a quadratic product of the diffraction potential vanishes identically. The first 

term in the right-hand side of (7) is the leading-order free-surface impulse force. 

Substituting (8) in (1) & (2), the Impulse Froude-Krylov force (1) and Impulse diffraction force (2) 

become equal in the limit of small Ka and their sum is 

 

 

The first term in the right-hand side of (9) is the inertia component of Morison’s equation. The second 

term is a point quadratic load acting on the waterline.  

Substituting (8) in (7), recalling that 1 cosn    on the cylinder boundary and denoting by

1 2 3( , , ) Iv u u u    we obtain 
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For a unidirectional wave 
2 0u  . On the vertical boundary of the cylinder 

3 0n  , therefore 

1 1 1xn u n u  . On the cylinder bottom 1 0n  , therefore the first term of the integrand in (10) becomes

2

1 1 1xan u u . Invoking Gauss’ theorem in the second term of the integrand we obtain  

 

In (11) an integral over the waterplane area SW on z=ζI was added and subtracted in order to apply Gauss’ 

theorem over a closed surface and the mass conservation principle was invoked. Using the nonlinear 

kinematic free surface condition on z=ζI and combining expressions (10) and (11) we obtain 

 

 

The expression (12) added to (9) leads to GI Taylor’s force expression which accounts for the convective 

terms of the ambient wave acceleration [Newman (1977)]. Expression (12) also includes a point load at 

the waterline. The small Ka expression for the total force is the sum of (9) and (12) 

 

 

The higher order correction to the diffraction potential (8) was shown by Faltinsen, Newman and Vinje 

(1995) to be of O(Ka)
3
. This is of the same order as that of the second term in the right-hand side of 

expression (7) which is neglected. Second-order diffraction effects are therefore dominated by quadratic 

products of the incident wave disturbance and its cross products with the diffraction disturbance. The 

nonlinear force (1), (2) & (7) hence neglects effects which are quadratic in the diffraction wave 

disturbance. Its small Ka approximation (13) reduces to the GI Taylor formula which accounts for up to 

cubic effects above the z=0 plane and a point load at the waterline which includes quadratic and a cubic 

effects, all expressed as explicit functions of the ambient wave kinematics.  
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