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Introduction
The impact of marine vessels in water has been the subject of considerable study. The large forces that occur
during impact have consequences for structural design and can influence the motions of the vessel. Therefore the
prediction of impact loads is an important aspect of ship design.

The starting point for this work comes from Zhao et al. [4]. In that paper, the Generalized Wagner Method
is introduced, which accounts for the exact body boundary condition, while maintaining a horizontal free surface
on which the high-speed free-surface boundary condition is applied. The position of the free surface is updated to
account for the water run-up along the body.

In this abstract, an extension of the Generalized Wagner Method described in Zhao et al. [4] is made for a
high-order boundary element method. The boundary element method uses B-splines to represent the flow quan-
tities, allowing for smooth variations with relatively few elements. An additional extension is made by using an
acceleration potential to obtain accurate forces, which requires a special treatment of the waterline expansion rate.
The treatment of the waterline expansion term is different than previous work, such as Bandyk and Beck [1]. After
the validation of the high-order two-dimensional method, it is exented into three dimensions.

Methodology
High order BEM Green’s Identity in three-dimensions is given in Equation 1. The 3D free-space Green’s
function G = 1/r is used, where r = |~x− ~ξ|.
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Green’s Identity in two-dimensions is given in Equation 2. The 2D free-space Green’s function G = ln r is used.

πφ (~x, t) =

∫ b(t)

a(t)

[Gn (~x, ξ)φ (ξ, t)−G (~x, ξ)φn (ξ, t)] dS(ξ) (2)

The potential φ and its normal derivative φn are represented on the boundaries with B-splines. For this work
quadratic B-splines are used, and thus spatial derivatives up to second order along the boundary surfaces can be
computed analytically.

Boundary Conditions The boundary condition on the free surface is φ = 0, which is the high-speed limit, and
is the common condition for impact problems. Similarly, φt = 0 on the free surface. The body boundary condition

is φn = ~̇δ and φnt = ~̈δ, where ~δ is the body displacement vector.

Acceleration potential Due to the large velocities in impact problems, the time derivatives in the problem will
also be large. The pressure, given by Equation 3, depends on the time derivative of the potential, and thus it is
important to accurately calculate that derivative to obtain accurate forces.

p = p∞ − ρ
∂φ

∂t
− 1

2
ρ |∇φ|2 − ρgz (3)

Therefore, anaylical derivatives are prefered over numerical derivatives. Note that for impact problems, the hydro-
static term ρgz is often neglected as much smaller than the other terms. By solving directly for the time derivative



of the potential, pressure can be obtained without numerical derivatives. Taking the partial derivate of Green’s
identity with respect to time and using Leibniz’s Rule for the time dependent wetted surface yeilds:
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Here ~v is the velocity of the surface and the second term cancels out because G and φ satisfy Laplace’s equation.
In two-dimensions the equation for φt becomes:

πφt (~x, t) =

∫ b(t)

a(t)

[Gn (~x, ξ)φt (ξ, t)−G (~x, ξ)φnt (ξ, t)] dS (ξ)

+ [Gn (~x, b(t))φ (b(t), t)−G (~x, b(t))φn (b(t), t)]
db

dt
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(5)

The terms da/dt and db/dt become the waterline expansion rates for impact problems. From this equation, it
becomes clear that φ, φn, G, and Gn will be evaluated at the ends of the patches, and that the singularity of the
Green’s function must be removed. To accomplish this, the acceleration potential problem is solved using the
negative image method. Using the image method, the sources will cancel at the free surface, and the dipoles will
become a single vertical dipole. Analytically, the flow around end of the body is a corner flow, with φ = Czα, and
the power α is related to the local deadrise angle β by Equation 6.

α =
1

2− 2β/π
(6)

The edges of the body surface are then at (c(t), η(t)) and (−c(t), η(t)), and da/dt = dc/dt and db/dt = −dc/dt.
The calculation of the wetted surface expansion rate dc/dt is treated in the next section.

Calculation of expansion rate The goal of using the acceleration potential is to eliminate numerical deriva-
tives. Therefore, it is desirable to have an analytical expression for the wetted area expansion rate dc/dt. This is
achieved using a Wagner-like method, where the relative vertical velocity on the free surface is integrated to find
the intersection with the body surface ηb(y). The method for the classic Wagner problem (flat plate approximation)
is shown in Equation 7 [2]:

ηb(y) =

∫ t
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V |y|√
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Here, µ(c)dc = V dt, or dc/dt = V/µ(c), where V is the impact velocity. A form for µ(c) must be assumed, and
here it is assumed that µ(c) = A, a constant. By using ηb(y) = y tanβ for a wedge, the well known Wagner result
is obtained.
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Using the power law for corner flow for the velocity at y = c and the asmptotic behavior that the vertical velocity
goes to V as y →∞, a similar analysis yeilds:
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Defining u = (c/y)2, then du = 2(c/y)(dc/y) = (2/y)u1/2dc and dc = (y/2)u−1/2du. Substituting in yeilds:
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Figure 1: Non-dimensional force comparison between results of [4] and present method. The horizontal lines mark
classical von Karman (lower) and Wagner (upper) methods.

Here, B
(
1
2 , α

)
is the beta function evaluated at 1/2 and α. Reformulated in terms of gamma functions:
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Thus, the expression for the waterline expansion rate is:
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In the limit of vanising deadrise (β → 0), α → 1/2 and then Γ(1/2) =
√
π and Γ(1) = 1 leading to the Wagner

result. For limit of vertical deadrise (β → π/2), α→ 1 and then Γ(1) = 1 and Γ(3/2) =
√
π/2 leading to the von

Karman solution (no run-up).

Results
Here the results are shown for two-dimesional wedge impact and initial results for three-dimensional impact.

2D Wedge impact The two-dimensional version of the high-order boundary element method is run for a constant
deadrise wedge with several deadrise angles. In Figure 1, the vertical force is compared with the force reported in
[4] as well as finite-volume CFD runs, and has similar results, but a straighter trendline. The trend on the force from
the current method as the deadrise approaches zero is to the results of Wagner, as given in [2]. If the wetted surface
expansion rate calculated in Eqn 12 is not used, labeled Generalized von Karman (GVK), the method approaches
that of von Karman for diminishing deadrise. These trends are due to the fact that the wetted area expansion rate
is specified in the present method, and are different from the other methods because those expansion rates are
numerically calculated. The benefit of present method is that relatively large time-steps while retaining reasonable
accuracy for the force. For example, the presented results were generated using only four time-steps.



 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  10  20  30  40  50

F
/(

ρ
V

4
t2

) 
(t

an
3
β

)

β [deg]

Figure 2: Non-dimensional force for constant velocity cone impact using a GVK method.

3D Impact Initial results for the constant velocity impact of a cone are shown in Figure 2, with only the gen-
eralized von Karman force computed currently with linear pressure. These results can be compared to analytical
results described in [3] as the deadrise angle approaches zero. The heave added mass for a disc of radius a is
A33 = 4/3ρa3, and the impact force is given by F3 = ∂/∂t[A33V ]. Shown in Figure 2 is the nondimensional
force for several deadrise angles using a generalized von-Karman method. The trend is towards a non-dimensional
force of 4 at zero deadrise, as is expected from the equation given above. CFD simulations will be performed for
comparison as the three-dimensional generalized Wagner method is implemented, and comparisons will also be
made to the numerical results of [3].
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