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Highlights:

• A novel solution method for the diffraction and radia-
tion of waves by a floating, articulated raft is presented.
• Insight is given into how the device performance
might be optimised.

1. Introduction

In this paper we are concerned with a three-
dimensional model for a wave energy converter com-
prised of a series of floating rectangular pontoons.
These are connected by a series of hinges, power be-
ing generated through the relative motions of adjacent
elements due to the incident waves. The model, which
assumes shallow draft and is analysed here using small
amplitude linear water wave theory, is representative
of the Cockerell raft design (e.g. [1]). The current
interest in this problem is two-fold. First, we would
like to develop an understanding as to what elements
of raft-like wave energy converter design, more recently
advocated in the development of the Pelamis device, al-
low it to generate power so successfully. In doing so we
also hope to propose how to optimise the performance
of raft-like designs. Second, it allows us to apply and
extend some newly proposed mathematical techniques
(see [5]) for the efficient solution to problems involving
rigid plates lying on the surface of the water.

2. Formulation

Cartesian coordinates are chosen with the origin in the
mean free surface level and z pointing vertically up-
wards. The fluid has density ρ and is of infinite depth,
inviscid and incompressible. Fluid motions are irrota-
tional and of small amplitude. A hinged raft of thick-
ness h and density ρs < ρ floats on the surface of the
water with small draft d = ρsh/ρ. It is comprised of
N rectangular sections as shown in Figure 1, each of
width 2b and hinged along x = Xn for n = 1, ..., N −1,
−b < y < b. The entire raft is centred at the origin
and occupies a region

D =

N⋃
n=1

Dn (1)

with

Dn = {(x, y)|Xn−1 < x < Xn,−b < y < b} (2)

being the planform of the nth pontoon. Finally, we
denote the total length of the raft by 2a = (XN −X0).

Monochromatic plane waves of radian frequency ω
are incident from x < 0, making an anti-clockwise an-
gle θ0 ∈ (−π/2, π/2) with the positive x-direction. We
shall assume waves of small steepness KA� 1 where A
is the wave amplitude and 2π/K the wavelength where
K = ω2/g is the wave number and g is the gravitational
acceleration. Damping devices placed along each hinge
enable power take-off, exerting a force opposing and in
proportion to the rate of change of angle Θn made be-
tween adjacent plates for n = 1, ..., N − 1.

Under the assumptions made we describe the fluid
velocity as the gradient of a scalar velocity potential,

Φ(x, y, z, t) = <
{
−igA
ω

φ(x, y, z)e−iωt
}

(3)

where φ(x, y, z) satisfies

52φ = 0 on z < 0 (4)

and

| 5 φ| → 0, z → −∞. (5)

In addition, on z = 0 we have the combined kinematic
and dynamic free surface condition

φz(x, y, 0) = Kφ(x, y, 0) (6)

for (x, y) /∈ D, and the kinematic condition on the raft

φz(x, y, 0) =
(x−Xn−1)(ηn − ηn−1)

(Xn −Xn−1)
(7)

for (x, y) ∈ Dn, n = 1, ..., N , where

ζ̇n(x, y, z, t) = <
{
Aηn(x, y, z)e−iωt

}
(8)

are the vertical velocities of the hinges.
We exploit the linearity of the theory to decompose

the motion of the raft into the sum of N + 1 linearly
independent ‘plate modes’ (e.g. [3,4]) corresponding to
the functions fn(x) for n = 0, 1, ..., N . There are two
rigid body modes (f0(x) and f1(x), representing heave
and pitch respectively) along with N−1 further hinged
modes (fn(x) for n = 2, ..., N). These are defined by

fn(x) =


1 if n = 0

x if n = 1

|x−Xn| if 1 < n ≤ N.
(9)
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Figure 1: Some key parameters imposed on a side view (and close-up) of the articulated raft converter used
in the hydrodynamic model.
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Figure 2: Illustration of ‘plate modes’ fn(x), n =
0, 1, 2, 3 for a raft made up of three pontoons.

For an illustration of the modes in the case of a raft
made up of three components, see Figure 2. Thus, we
may decompose our kinematic condition on the raft (7)
as

φz(x, y, 0) =

N∑
n=0

Unfn(x) (10)

where U0 is the vertical velocity of the heave mode
and Un, n = 1, ..., N represent the angular velocities
associated with the pitching and hinged modes. Under
small amplitude theory they are given by

Un =

{
η0 if n = 0
ηN−ηn−1

XN−Xn−1
if n = 1, ..., N.

(11)

This choice of modes is different to that proposed by
Newmann [3,4] and suits our ultimate goal of assess-
ing power production from hinged rafts as each mode
engages just a single hinge. Correspondingly to the
decomposition in (10) we write

φ(x, y, z) = φS(x, y, z) +

N∑
n=0

Unφn(x, y, z) (12)

where φS(x, y, z) represents a scattering potential in
which the raft is held fixed and is subject to an incident

wave, it satisfies

∂φS

∂z
(x, y, 0) = 0 for (x, y) ∈ D (13)

and φn(x, y, z), for n = 0, 1, ..., N , represent radiation
potentials associated with the forced motion of the raft
in each of the N + 1 modes and satisfy

∂φn
∂z

(x, y, 0) = fn(x) for (x, y) ∈ D. (14)

The incident wave is given by

φI (x, y, z) = eiK(x cos θ0+y sin θ0)eKz (15)

and the potentials φR and φD ≡ φS − φI describe out-
going waves at large distances from the raft.

The component of the hydrodynamic force due to
scattering in the nth plate mode is defined as

XS
n = iωρ

∫∫
D
φS(x, y, z)fn(x) dx dy. (16)

Similarly, we can define the force experienced in the
nth mode due to forced motion in the mth mode in
terms of the real added mass and radiation damp-
ing matrices A and B, with components Amn, Bmn,
m,n = 0, ..., N , as

iωAmn − Bmn = iωρ

∫∫
D
φm(x, y, z)fn(x) dx dy.

(17)

Then the equation of motion of the raft can be written
as

−iωMU = XS + (iωA−B) U + Xe −
i

ω
C (18)

where M = diag{M0,M1, ...,MN} is a diagonal iner-
tia matrix, C encodes the hydrostatic restoring forces,
XS = (XS

0 , X
S
1 , ..., X

S
N ) is the exciting force vector and

Xe = −ΛU (19)



with Λ = diag{0, 0, λ1, ..., λN−1} represents the power
take-off in the hinges, each having a damping rate λn,
n = 1, ..., N − 1. Elements of C are

Cnm = ρg

∫∫
D
fn(x)fm(x) dx dy (20)

whilst

M0 = 4ρsabh (21)

and

Mn = 2bρs

∫ XN

X0

∫ h−d

−d
(f2n−1(x) + z2) dz dx

' 4ρbda

[
4

3
a2 − (XN −Xn−1)(Xn−1 −X0)

]
(22)

for n = 1, ..., N after elements of O(h3) have been
negected due to small amplitude assumptions.

Assuming λn to be real constants for n = 1, ..., N−1
so that the power and velocity are in phase it may then
be shown (see [2] for example) that the power can be
written as

W =
1

2
X†SE†ΛEXS (23)

where E = (Z + Λ)
−1

and Z = B− iω(M+A−C/ω2)
whilst the dagger denotes the conjugate transpose.

Case N=2: two pontoons

In the particular case of two identical pontoons this
leads to

W =

∣∣∣Z02

Z00
XS

0 −XS
2

∣∣∣2
4(<{z}+ |z|)

(
1− (λ1 − |z|)2

|λ1 + z|2

)
(24)

where z = Z22 − Z2
02/Z00. We may then readily see

that the raft is optimally tuned when λ1 = |z| giving

Wmax =

∣∣∣Z02

Z00
XS

0 −XS
2

∣∣∣2
4(<e {z}+ |z|)

. (25)

Thus, in order to study the performance of the device
we must first determine the hydrodynamic coefficients
A and B along with the exciting force XS . These de-
pend on the solution of the hydrodynamic problems for
φS and φm, m = 0, ..., N which is where our attention
now turns.

3. Solution of the hydrodynamic prob-
lems

3.1 The scattering problem

The scattering problem deals with the diffraction of the
incident wave when the raft is held fixed horizontally.

We define the Fourier transform of φS(x, y, z) by

φ
S

(α, β, z) =

∫ ∞
−∞

∫ ∞
−∞

φD(x, y, z)e−iαxe−iβy dx dy.

(26)

Then, taking Fourier transforms of (4), (5), it follows
that (

d2

dz2
− k2

)
φ
S

= 0 for z < 0 (27)

where k = α2 + β2 and φ
D → 0 as z → −∞. Using

(6), (7) we also find that(
d

dz
−K

)
φ
S

(α, β, 0) = −KP (α, β) (28)

where

P (α, β) =

∫∫
D
φS(x, y, 0)e−iαxe−iβy dx dy. (29)

Thus, we find that the Fourier transformed velocity
potential is given by

φ
S

(α, β, z) =
KP (α, β)

K − k
ekz. (30)

Invoking the inverse Fourier transform of (30) then re-
sults in an integral representation for φD(x, y, z)

φD(x, y, z) =
K

4π2

∫ ∞
−∞

∫ ∞
−∞

P (α, β)

K − k
eiαxeiβyekz dα dβ.

(31)

Setting z = 0 then results in an integral equation for
φS(x, y, 0) for X0 < x < XN and −b < y < b. This
may not be solved analytically, instead we employ a
Galerkin expansion method using the approximation

φS(x, y, 0) '
2P+1∑
p=0

2R+1∑
r=0

cSprvp

(x
a

)
vr

(y
b

)
(32)

where vr(t) = 1
2e
irπ/2Pr(t) and Pr(t) are orthogonal

Legendre polynomials. Substituting for this approxi-
mation in the integral equation, multiplying through
by v∗q (x/a)v∗s (y/b) and integrating over X0 < x < XN ,
−b < y < b results in the following system of linear
equations

cSqs
4(2q + 1)(2s+ 1)

+

2P+1∑
p=0

2R+1∑
r=0

cSprKpqrs

= jq(Ka cos θ0)js(Kb sin θ0) (33)

for q = 0, ..., 2P + 1 and s = 0, ..., 2R+ 1, where

Kpqrs =
Kab

4π2

∫ ∞
−∞

∫ ∞
−∞

jp(αa)jq(αa)jr(βb)js(βb)

k −K
dαdβ

(34)



and jn are spherical Bessel functions. Due to the sym-
metry properties of the jn the integrals which deter-
mine Kpqrs vanish if either p + q or r + s is odd, a
rendundancy which results in the reduction of (33) to
a set of four uncoupled systems that may be solved for
the unknown expansion coefficients cSpr.

The exciting torques on the raft may then be ex-
pressed in terms of the Galerkin expansion coefficients
as

XS
n = iωρab

2P+1∑
p=0

cSp0gp,n (35)

where

gp,n =

∫ 1

−1
vp(x)fn(ax)dx, (36)

an integral which may be expressed in closed form.

3.2 The radiation problem

The same solution method is applied to the radiation
problem. This results in a different right hand side in
the system of linear equations (33) due to the forcing
provided by the incident wave being replaced by the
forced oscillatory motion corresponding to each of the
N + 1 plate modes.

4. Preliminary results

Numerical work is ongoing, but preliminary results
seem promising. These are shown in terms of the cap-
ture factor, a dimensionless measure of wave power ab-
sorption defined by

l̂ =
W

2bWinc
(37)

where 2bWinc is the power incident on the width of
the raft. Figure 3 shows results for a raft consisting of
two identical pontoons plotted as a function of dimen-
sionless wave number Ka for varying width to length
ratios a/b = 1, 2, 4, 8. The curves in plot (a) show max-
imal capture factors and correspond to optimal tuning
for every incident wave frequency. The capture fac-
tor is seen to increase in height with increasing a/b,
suggesting an improvement in performance for longer
devices. However, it is important to note that this is
dependent on the choice of non-dimensionalisation of
the power. Indeed, if we had non-dimensionalised us-
ing the volume instead then the improvement would be
less significant.

The peaks in the curves suggest resonance for wave-
lengths of about twice the device length λ = 2π/k '
4a. This means that, as you might expect, the raft
bends maximally when half a wavelength covers the
span of the raft.

Figure 3(b) shows results for a particular (as yet
unoptimised) realisation of λ when a/b = 8. Only a
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Figure 3: Capture factor is plotted as a function of
Ka for a raft of two identical pontoons subject to nor-
mally incident waves. (a) shows maximal capture fac-
tors for varying length to width ratios a/b = 1, 2, 4, 8
corresponding to the solid, dashed, dotted and chained
curves respectively whilst (b) shows a particular real-
isation compared with the maximum when a/2b = 8.
The density ratio ρs/ρ is set at 0.9.

small loss in power absorption is seen when the device
is tuned to a particular incident wave frequency.

Work is currently ongoing in producing numerical
results for larger systems of pontoons.
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