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Highlights: 

 The whole process of a buoyant body emerging and departing from water has been simulated.  

 A critical density for complete water exit is derived with the slender body theory. 

1. Introduction 

Water entry and exit has been a topic of wide range of 

applications in naval architecture, ocean engineering and 

costal engineering, etc. Relative to water entry, there has 

been far less work on water exit. During water exit, the 

wetted surface of the body decreases with time and the 

liquid may detach from the body eventually. As a result, 

water exit is less violent and can be taken as a kind of 

‘loads-off’ process, compared to the ‘loads-on’ one 

during water entry, which may be part of the reason why 

water exit is less studied. From the modelling point of 

view, water exit cannot be easily treated as the reverse 

process of water entry. For example, it is difficult to use 

the Wagner theory, commonly used in the water entry, in 

the water exit problem. However, water exit is also an 

important engineering problem. In fact, for a ship in 

rough seas, its bow will repeatedly emerge from water 

and then hit water surface, which forms a continuous 

water exit/entry process. 

Work on water exit can be divided ‘forced water exit’ 

and ‘free water exit’. In the forced water exit, Greenhow 

& Moyo (1997) simulated a 2D circular cylinder by 

using the boundary-element method (BEM) based on 

complex velocity potential. They adopted the fully 

nonlinear boundary condition at the free surface and 

calculated the vertical rise of the cylinder right before the 

free surface broke up or the body penetrated through the 

free surface. Korobkin (2013) studied constant 

acceleration water exit of a 2D or axisymmetric body 

initially partially submerged. Boundary conditions on the 

liquid surface were linearized and imposed on its mean 

position. The shape of the wetted part of the body was 

simplified by using the so-called ‘equivalent flat-plate 

approximation’. This model was further applied by 

Korobkin et al. (2014) to consider a prescribed 

acceleration which varied in time, and then further 

extended by Khabakhpasheva et al. (2015) to consider 

the body whose shape varied in time, which was initially 

studied by Tassin et al. (2013) by using the von Karman 

approach. Rajavaheinthan & Greenhow (2015) studied 

forced constant acceleration exit of 2D bodies by using 

fully-nonlinear BEM. The bodies with different shapes 

were initially partially submerged and suddenly moved 

upwards. However, the simulation terminated before the 

water detachment from the body. A very recent work by 

Ni et al (2015) considered the entire process of the water 

exit of an initially fully-submerged axisymmetric body at 

constant speed. Two major difficulties, related to 

free-surface breakup and water detachment from the 

body, have been solved. Consequently, as the body 

continued to move up, it would first penetrate through 

the free surface and would detach from water completely 

later. 

Relative to the forced water exit, the free motion one 

is more challenging and thus less studied. The fluid force 

and the motion of the body are coupled, and so the 

fluid-structure interaction must be solved at each time 

step, which may cause some difficulties in numerical 

modelling. Moyo & Greenhow (2000) simulated the free 

motion of 2D light cylinders by using BEM. Light 

cylinder with different densities and initial submergence 

depths were simulated and the free-surface deformation 

as well as velocity and acceleration of the body were 

obtained. However the calculation was terminated before 

the body penetrated through the free surface. In the 

present work, we shall consider the whole process of 

water exit of an initially fully submerged axisymmetric 

buoyant body in free motion. 

2. Mathematical Model and Numerical Method 

 
Fig. 1 Sketch of the problem  

Fig.1 gives a sketch of the problem, which shows an 

initially fully-submerged spheroid exiting water under 

buoyancy, whose major semi axis and minor semi axis 

are b and a respectively. The distance between the initial 

body centre and the undisturbed free surface is h . 

When the body motion is along the z  axis, the flow is 

then axisymmetric. The fluid is assumed inviscid and 

incompressible, and the flow is irrotational. Thus, a 

velocity potential   can be introduced, which satisfies 

Laplace’s equation 
2

0   ,                  (1) 

in the fluid domain. The impermeable boundary 

condition on the wetted part of the rigid body surface 

b
s  is given by 
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
,               (2) 

where ( )W t  is the vertical velocity of the body, which 

is a function of time and needs to be found at each time 



step and 
zn  is the z  component of normal vector 

( , )r zn nn  of the body surface pointing out of the fluid 

domain. On the free surface 
f

s , the fully nonlinear 

kinematic and dynamic boundary conditions can be 

written below in the Lagrangian framework:   
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where /D Dt  is the substantial derivative following a 

fluid particle,
 

g  is the acceleration due to gravity. 

Bernoulli equation and constant pressure on the free 

surface have been used in Eq.(4). The boundary 

condition at infinity s  is based on the assumption that 

the fluid there is undisturbed. One has 

2 2
0. r z  

        
(5) 

Green’s third identity with the Green function and 

boundary-element method will be adopted to solve Eq.(1) 

with boundary conditions in Eqs.(2)-(5). 

During water exit, the body will break up the free 

surface when its font emerges from water, and detach 

from the free surface when its back departs from water. 

The breakup and detachment of the free surface must be 

carefully treated in numerical modelling. Following the 

procedure in Ni et al. (2015), it is assumed that the free 

surface will break up when the thickness of the water 

layer right above the top of the body is smaller than a 

critical distance cl . Before the back of the body 

detaches from the water, a water column is usually seen 

to be attached to the body surface. It is assumed when 

the radius of the water column is smaller than cl , 

body/liquid detachment will occur in the numerical 

simulation at the next time step. Ni et al. (2015) have 

undertaken extensive numerical investigations and found 

that the results of interest are not sensitive to the choice 

of cl  
when it is sufficiently small. It is taken as 10% 

of the element size on the body in the present work. 

Nondimensionalisation is applied based on the length 

of the body 2L b , the acceleration g  due to gravity, 

and the density of the fluid  . Thus we use /L g  for 

time, gL  for the velocity, 
3

gL  for the velocity 

potential and gL  for pressure respectively. The 

dimensionless parameters will then be denoted by a bar. 

Besides, /h L   is defined as the initial submergence 

parameter. 

2.1 Decoupling of the motion of the body and fluid 

flow 

By Newton’s second Law, body motion equation is 

e

dW
m F F

dt
  ,

              
(6) 

in which the mass of the body
 

22 /3B B Bm V a     

with constant body density 
B , 

e
F  is the external 

force exerted on the body, which is 
e

F m   when only 

the gravity is considered. F  is the fluid force and can 

be obtained by integrating the fluid pressure obtained 

from the Bernoulli equation over wetted body surface: 

21
( )

2
b

z z

s

F F z n ds
t


      

 ,
     

(7) 

The term / t   on the right hand side of Eq.(7) is 

problematic in direct numerical calculation through 

difference method with time. We follow the method 

proposed by Wu & Eatock Taylor (2003). / t   can 

be seen as a harmonic function, which satisfies Laplace’s 

equation 
2 ( / ) 0t    ,             (8) 

with boundary conditions on the free surface and body 

surface (Wu, 1998):  
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We introduce two auxiliary functions 
1( , , , )x y z t

 
and 

2 ( , , , )x y z t  (Wu et al., 2004) and let  
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1  
and 

2  both satisfy the Laplace’s equation in the 

fluid domain and the following boundary conditions, 
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The problems for 
1  

and 
2  can be solved by a 

similar procedure used for the velocity potential  . 

Subsequently the body motion equation can be found  
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where 1

b

a z

s

m n ds   which is effectively an added 

mass (Wu & Eatcok Taylor 2003). 

2.2 Slender body theory 

When / 1b a , we may adopt the slender body 

theory. The fluid force F  can be decomposed into the 

hydrodynamic one dF
 

and the hydrostatic one sF : 

d s

dW
m F F m

dt
   ,          (14) 

When the body is slender, the free surface can be 

assumed to be undisturbed, and 0   on 0z  . 

Within this framework the hydrodynamic force can be 

written as (Wu 1998): 

1

2

a
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where the added mass 
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with /W   . The hydrostatic force can be written as  

b

s z d

s

F zn ds V   ,            (16) 

where 
d

V  is the volume of the body below the flat free 

surface. Substituting Eqs.(15) and (16) into (14), we 

have  

1
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For a spheroid, one has 
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where 
cz  is the vertical coordinate of the centre of the 

body and 
B

V  is the volume of the full spheroid defined 

after Eq.(6). 

Based on the slender body theory (Mackie, 1962, 

Newman, 1977), 
 

after Eq.(15) can be written as 
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where ( )S   is the cross-sectional area of the body at 

z   and ( )S   is its derivative. For the case of a 

spheroid, 
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For the axisymmetric problem the added mass can be 

converted into  
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where 
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one has the acceleration of the body 
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Assuming 2W  and noticing 
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differential equation for  ,  

/
2a s

a a

dm dz F md

dz m m m m


  

 
,       (22) 

This can be solved through the standard procedure, from 

which with the initial condition (0) 0W  , we have 
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and /s a Bk m V  is the added mass coefficient.  

Substituting Eq.(23) into Eq.(21), we have 
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To have the body emerge from water fully, we should 

have 0W   at 1/ 2cz  . This gives us a condition to 

find the critical density 
,B c  of the body, below which 

the body will exit from water completely. By 

substituting 0W   and 1/ 2cz   into Eq.(23), one 

can calculate the critical density from (1/ 2) 0f   to 

obtain 

,
1/ 2

B c








.             (25) 

As 1/ 2   for an initially fully-submerged body, 

we have 
,1/ 2 1B c  . When 

,B B c  , the body 

will exit the free surface totally. When 
, 1B c B   , 

the body will exit water partially before it falls down. 
3. Results and discussions 

We undertake water exit of a body at a small density 

0.2
B

  , whose dimensionless minor axis =1/8a . The 

submergence parameter 0.55  . According to Eq.(25), 

one can obtain 
,

0.5238
B c

  , and so the body will burst 

out of the water totally as 
,B B c

  . The initial total 

number of elements on the body surface in the meridian 

plane is taken as 40bN 
 

and 60bN   respectively. 

Elements of equal size 
bl  are used on the body surface 

and on the free surface within a prescribed radius from 

the axis of symmetry. Beyond the prescribed radius, 

element size increases gradually until it reaches a 

maximum. As described in section 2.1, the critical 

distance cl  for the free-surface breakup and the flow 

detachment
 
is taken as 10% of 

bl .  

 
Fig. 2 Free-surface profiles in the 0 0y   plane in the 

moving system (1): 0t  , (2): 0.3045t  ,  

(3): 0.5013t  , (4): 0.6465t  , (5): 0.7763t  ,  

(6): 0.8897t   and (7): 1.0036t  .  
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Fig.2 provides the free surface at 
0 0y   plane in the 

moving system 0 0 0
O x y z  with its origin fixed at the 

centre of the body. The initially stationary body 

accelerates suddenly under the action of its net vertical 

force and pushes the water right above upwards and 

sideway. When the body is close to the free surface, the 

water layer above the top of the body becomes thinner 

and thinner. In Fig.2 (2), the very thin water layer has 

just been removed and the body has just penetrated 

through the free surface. After that the body continues 

moving upwards, while the waterline, or the intersection 

of the free surface and the body surface, stays above the 

undisturbed free surface. The water detaches from the 

body at 1.0036t   in Fig.2 (7). It can be seen a water 

column below the body has formed at the time of 

detachment and the free surface is expected to oscillate 

afterwards under the gravitation. The disturbance will be 

propagated away in the form of wave radiation. 

 
Fig. 3 Acceleration of the body versus the vertical 

coordinate of the centre of the body  

 
Fig. 4. Velocity of the body versus the vertical 

coordinate of the centre of the body 

We then compare the numerical results of BEM with 

those from the slender body theory (SBT). Fig.4 presents 

the variation of acceleration of the body versus the 

vertical coordinate of the centre of the body, by using 

SBT and BEM respectively. It can be seen that the results 

from these two methods agree well, especially in the 

middle part of the curve which corresponds to post 

breakup of the free surface. In SBT, the calculation 

terminates at 0.5cz   when the body departs from the 

flat free surface. BEM simulation continues because of 

the rise of the free surface. This is the principal reason 

why these two curves have a bigger difference at the 

final stage of water exit. It can be seen that 

/ 1dW dt    when the body detaches from the water, 

as the fluid force becomes zero and the external force is 

gravity only. Fig.4 provides the variation of velocity of 

the body with its position. The agreement between 

results from SBT and BEM is even better than that in 

Fig.3. 
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