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1. Introduction 

When an offshore structure is under a severe sea state, the analysis of nonlinear hydrodynamics is essential. 

Particularly, the second-order hydrodynamic quantities are very important as the design parameters of the offshore 

structure. The stochastic behaviors of the second-order quantities are known to deviate from the Gaussian distribution 

model due to nonlinearities, so that either direct simulations in the time-domain or the characteristic function approach 

in the frequency-domain has been adopted to estimate the probability distribution of them.  

In this study, the stochastic behaviors of the second-order hydrodynamic quantities are investigated using a 

characteristic function approach which involves the eigenvalue analyses with the Hermitian kernels constructed with 

quadratic transfer functions. Two different second-order responses are considered in the present analyses: springing 

responses of TLP tendons and the slow-drift motions of a semi-submergible platform moored in waves. The 

applicability of the characteristic function approach in predicting extreme values for different second-order quantities 

are assessed by comparing the results with direct simulations in the time domain. 

 

2. Mathematical Background 

   

Let Y(t) be a nonlinear hydrodynamic response at a certain location to unidirectional random excitation, X(t). Then 

Y(t) can be represented as a functional power series of X(t), i.e. two-term Volterra series: 
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Yn(t) indicates the nth order component of total response Y(t), and h1(t1) and h2(t1, t2) are linear and quadratic impulse 

response functions respectively. We hereby neglect the zero-th order term Y0 since it is not a stochastic variable. This is 

the case when the random excitation X(t) be expressed as a sum of sinusoidal component waves, i.e. 
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 . In the equations above, ωj and Aj indicate the frequency and the complex amplitude of jth wave 

component respectively, and H1(ωj) and H2(ωj, ωk) represent the linear transfer function (LTF) and the quadratic transfer 

function (QTF) respectively. Upper script ( )
*
 indicates the complex conjugate of a quantity.  

Let X(t) be expressed as an equivalent filtered white noise process with weighting function a(τ) and a unit white 

noise N(t) as follows.  
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Expanding N(t-τ) with basis functions ϕj(t) and standardized Gaussian variates Xj(t) as in equation (3), the first- and 

second-order responses are expressed as equations (4) and (5).  
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Then, the basis functions ϕj(t) are required to be the eigen functions of the integral equation (7), 
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Since the kernel K(α, β) of the integral equation is symmetric the eigen functions ϕj(t) are orthonormal, the expression 
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for Y2(t) in equation (5) can be simplified as follows: 
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The characteristic function of a random variable is defined as the inverse Fourier transform of the probability 

density function. Then the characteristic function of the total response Y(t) becomes:  
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Since Xj are a standardized Gaussian variate, FY(θ) is analytically expressed as below: 

  

 

2 2

2 2

1

1
2(1 2 )

2

1/2
1

1

1 1
( )

2
1 2

j

j j j j j jj

C t

X it C X X i t

Y j

j
j

j

F e e dX e

i t

 










   







   
  






          (10) 

and the probability distribution of the response Y(t) is computed by Fourier transforming the characteristic function.  
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For the second-order component Y2(t), we can simply put Cj=0. Therefore, if the eigenvalue problem in equation (6) can 

be solved, the probability density function is obtained explicitly. 

Since QTF in the frequency domain is normally solved, the kernel K(α, β) is desired to be transformed into a 

frequency-domain expression. This is done by defining new eigenfunctions ψj(ω) as follows (Neal, 1974): 
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where SX(ω) is the energy spectrum of the input wave X(t). Then, the eigenvalue problem is expressed in the frequency 

domain as below with a newly defined Hermitian kernel K(ω1, ω2): 
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In the design point of view, the estimation of the exceedance probability of peaks is an essential task. However, the 

probability of Y2(t) is not enough for this task and the joint probability density functions of  ,    and    should be 

obtained. This is not an easy task. However, if the response spectra are narrow-banded, the derivation of the peak 

distribution can be drastically simplified.  

Let the probability of peaks lying in the range a to a+da be denoted by pp(a)da. In the case of narrow-banded 

process, the average number of cycles of zero up-crossing is identical to that of the total positive peaks (Kim, 2008), 

hence the probability which exceeds a can be expressed as 
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where   
  represents the averaged crossing frequency of positive slope at Y = a. According Newland (1984),   

  is 
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where      is the joint probability density function between   and   . However, since a random process and its first 

time derivative are statistically independent (Kim, 2008), the joint probability density function becomes the product of 

each of the probability density functions. Then, equation (15) can be transformed as 
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where     is a probability density function of   . Hence the exceedance probability distribution of peaks of the 

response can be calculated without any requirement of      under the assumption of small band-width. 

 

3. Applications 

 

3.1 Sum-Frequency Springing on TLP 

To validate the present method, the extreme springing tension on a TLP model with 4 tendons is considered (Kim 

and Yue, 1991; Eatock Taylor and Kernot, 1999). The principal particulars and configurations are presented in Table 1 

and Fig. 1. Total pretension is about a quarter of total displacement. It is assumed that the tension is linear. 
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The sum-frequency QTFs of tensions are obtained by 

using the results of WADAM and an irregular wave 

signal is generated from the Bretschneider spectrum with 

7-meter significant wave height (Hs), 15-second modal 

period (Tp), and uniformly distributed random phase. 

Then the sum-frequency tension signals are generated by 

the combinations of irregular wave and QTFs of tension, 

as in Fig. 2(a) and the probability density function of the 

sum-frequency tension are presented in Fig. 2(b). For the 

validation of the eigenvalue approach, probability is also 

measured from the results of direct simulation in Fig. 

2(a). Both results are almost the same to each other. 

 

 
Fig. 1 Configuration of TLP and tendon numbers 

 

 

 
(b) Tension in tendons 1 and 2 

 
(c) Tension in tendons 3 and 4

Fig. 2 Time history and PDF of the induced sum-frequency tension: Hs=7m, Tp=15sec, head sea 

 

Fig. 3 shows the expected maximum tension by springing. The results of direct simulation are also plotted by 

selecting and arranging the peak from time-histories in Fig. 2(a). The present method shows reasonable agreement with 

the direct simulation. The responses by Rayleigh distribution is presented together to compare the difference with linear 

analysis. Rayleigh distribution definitely underestimates the maximum tension. The difference becomes larger as design 

life cycle becomes longer.  

 
(a) Tendons 1 and 2 

 
(b) Tendons 3 and 4 

Fig. 3 Extreme value prediction of sum-frequency tension force (Hs=7m, Tp=15sec, 3 hours simulation for direct 

computation) 

 

3.2 Slowly-Varying Motion of Semi-Submergible Platform 

For the difference-frequency case, the slowly-varying motion of a semi-submergible platform is considered for the 

comparison with direct simulation and the present eigenvalue approach. Fig.4 and Table 1 show the test model and its 

characteristic quantities. In the case of direct simulation, The SML (SWIM-MOTION-LINES) is used, which is capable 

of the linear and the second-order hydrodynamic analyses in the frequency domain, and the platform/mooring lines 

coupled analysis in the time domain (Emmerhoff, 1994; Kim & Sclavounos, 2001). 

    Fig. 5 shows the probability density function and the probability of exceedance for peak values of surge motion 

when the motion and mooring lines are not coupled. Like the sum-frequency case shown above, the present approach 
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provides an excellent agreement with direct simulation. However, it is found that the body motion and mooring are 

coupled, it is found that the probability density of surge motion is can be well predicted using Rayleigh distribution. The 

details will be presented in the workshop. 

 

  
Fig. 4 Semi-submergible platform with mooring lines 

Pontoon length 43.5 (m) 

Pontoon breadth 15.0 (m) 

Pontoon depth 14.5 (m) 

Cylinder diameter 29.0 (m) 

Draft 40.0 (m) 

Displacement 143,528 (ton) 

KG 33.0 (m) 

Water depth 3,048 (m) 

Pre-tension 1,258 (kN) 

Number of lines 20 

Angle between the lines in one group 5 (°) 

Total length of one mooring line 4267.14 (m) 

Table 1 Characteristics of semi-submergible platforms 

 

       
(a) PDF               (b) Probability of exceedance 

Fig. 5 Probability density function and the probability of exceedance for peaks of surge motion: without coupling 

 

Acknowledgement 

This study is supported by the Global Leading Technology Program of the Office of Strategic R&D Planning(OSP) 

funded by the Ministry of Trade, Industry and Energy, Republic of Korea (Project No: 10042556), and Hyundai Heavy 

Industries. Their supports are greatly appreciated.  

 

References 

Eatock Taylor, R., and Kernot, M.P., 1999, On second order wave loading and response in irregular seas, Advances in 

Coastal and Ocean Engineering, 5, World Scientific, Singapore. 

Emmerhoff, O.J. (1994). The Slow-Drift Motions of Offshore Structures, Ph.D. Thesis, MIT. 

Kim, C.H., Zhao, C., and Zou, J., 1995, Springing and ringing due to nonlinear waves on a coupled TLP, Proceedings 

International Offshore and Polar Engineering Conference, Hague, Netherlands, 83-89. 

Kim, M.H., and Yue D.K.P., 1991, Sum- and difference -frequency wave loads on a body in unidirectional Gaussian 

seas, Journal of Ship Research; 35 (2), 127-140. 

Kim, S. and Sclavonous, P.D. (2001). “Fully Coupled Response Simulations of Theme Offshore Structures in Water 

Depths of Up to 10,000 Feet”, Proceedings of the Eleventh(2001) International Offshore and Polar Engineering 

Conference(ISOPE), Vol.3, 457-466. 

Naess, A., and Ness, G.M., 1992, Second-order sum-frequency response statistics of tethered platforms in random 

waves, Applied Ocean Research; 14 (1), 23-32. 

Naess, A., 1994, Statistics of combined linear and quadratic springing response of a TLP in random waves, Journal of 

Offshore Mechanics and Arctic Engineering; 116 (3), 127-136. 

 

Slow-drift surge (m)

P
ro

b
a
b

il
it

y
d
en

si
ty

-20 0 20 40 60
0

0.02

0.04

0.06

0.08

Direct simulation (Case 1)

Gaussian distribution

Eigenvalue analysis

Slow-drift surge (m)

L
o
g
(P

ro
b

a
b

il
it

y
o
f

E
x
c
ee

d
a
n

c
e)

20 30 40 50 60 70

-2.5

-2

-1.5

-1

-0.5

0

0.5 Direct simulation (Case 1)

Rayleigh distribution

Present method


