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Highlights

• The classical problem of a surface gravity waves generated by an oscillating and traveling surface disturbance
are analysed in presence of shear current of uniform vorticity.

• The appropriate dispersion relations is derived, and graphical and explicit solutions are presented in deep
waters. An expression for the Doppler resonance frequency is derived, showing strong asymmetry effects due to
the shear. In particular, when the disturbance travels against the shear and V S/g ≥ 1, the smallest resonance
frequency can tend to zero [V : forward speed, S: vorticity, g: gravitational acceleration].

• A full account is given of the different wave solutions existing in different wave vector sectors of the far-field,
as well as which waves may be found in front of the disturbance. Above a resonant frequency no waves exist
within a sector of forward directions, as known also without shear current. Another sector also exists when
S > ω0 (ω0: oscillation frequency) within which certain far-field waves are “cut off” due to the presence of the
shear current.

I. INTRODUCTION

The problem of waves generated by a pressure disturbance of oscillating strength travelling at constant velocity along the free
water surface is one of fundamental theoretical interest [1] as well as practical importance to seakeeping of ships and in the
study of wave loads on offshore vehicles[2]. It has been extensively studied for irrotational flow within the framework of linear
wave theory since the first few decades of last century. The velocity potential was found in Refs.[3] in infinite water depth and
extended to finite water depth in Refs. [4, 5]. Due to the Doppler effect, there exists a “resonant” value of the non-dimensional
frequency τ = V ω0/g (ω0 is the oscillating frequency, V is the forward speed) which is well known to be 1/4 in an unbounded,
deep water domain (c.f. Refs. [1, 3, 6–8]). This is the frequency at which forward propagating waves have zero group velocity
relative to the wave source, and is associated with infinite wave amplitude in linear theory [9].

In particular, when τ < 1/4, one wave solution was found in front of the moving source and three behind it, while two wave
solutions were found for τ > 1/4, both of which behind the source.

We solve the problem of a travelling, oscillating disturbance on a free surface when a sub-surface shear current of uniform
vorticity is present. The introduction of shear greatly increases the richness of the problem. It is also of practical significance
since waves and shear flows co-exist in many marine environments[10]. The profound effects of linearly depth-varying current
on gravity waves in three dimensions have been demonstrated in the recent literature [11–13].

We begin by deriving the general solutions to the linearised problem, whence the dispersion relation is deduced and graphical
solutions thereof are discussed. Subsequently, the dimensionless resonance frequency τRes is derived in deep waters, confirming
the well-known value 1/4 when shear is not present, while showing strong anisotropy with respect to direction of motion relative
to the shear flow. The existence (or otherwise) of different far-field waves in different sectors of propagation directions depends
on the subtle interplay of shear and oscillating frequency.

II. GENERAL SOLUTIONS

A wave-current system where waves are generated by a traveling oscillating disturbance and subsurface shear current linearly
varies with water depth. The geometry of the problem is depicted in Fig. 1. As shown in Fig. 1, there is a free surface which,
when undisturbed, is at z = 0, a shear current directed along the x direction given as U(z) = Sz (S > 0 is the uniform vorticity),
and the water depth is h. We assume incompressible flow and neglect effects of viscosity and surface tension. The resulting flow
is solved to linear order in all perturbation quantities. The disturbance moves with constant speed V making an angle β with
the x axis (hence with the current), while simultaneously oscillating harmonically with angular frequency ω0. The velocity and
pressure field we write

v = (U(z) + û, v̂, ŵ); P = p̂− ρgz, (1)

in which all hatted quantities are small perturbations due to the waves; P and p̂ are respectively the total and dynamic pressure;
ρ is the fluid density and g is the acceleration of gravity.

The pressure disturbance depends on time through an overall factor exp(−iω0t) (real part understood). We seek solutions
which are purely oscillatory in time when seen from a coordinate system following the source. All quantities are thus presumed
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FIG. 1: The wave-current model

to depende only on position vector ξ = x −Vt and on time through an overall factor exp(−iω0t) only. The following form of
solution is assumed,

[û, v̂, ŵ, p̂](ξ, z, t) =

∫
d2k

(2π)2
ei(k·ξ−ω0t)[u, v, w, p](k, z) (2)

where k = (kx, ky) = (k cos θ, k sin θ) is the wave vector, conjugate to ξ.
The 3-component Euler equations now read

i(kxU − k ·V − ω0)[u, v, w] + S[w, 0, 0] = −[ikxp, ikyp, p
′]/ρ (3)

in which the prime denotes the derivative with respect to z, and the continuity equation is ikxu+ ikyv + w′ = 0.
Following steps similar to Refs. [11, 12] and applying the impermeability boundary condition at seabed, we obtain the solution

of Eq.(3)
w(k, z) = kA(k) sinh k(z + h), (4)

from which u, v, p readily follow. A(k) is an unknown variable, independent of z and t.
Similarly, we assume similar Fourier forms for the surface elevation, ζ(ξ, t), and the applied external pressure distribution,

[ζ(ξ, t), p̂ext(ξ, t)] =

∫
d2k

(2π)2
[B(k), pext(k)]ei(k·ξ−ω0t), (5)

The linearized kinematic and dynamic boundary conditions at the free surface are now

kA sinh kh = −iσ0(k); iA(k)[σ0(k) cosh kh+
kxS sinh kh

k
]− gB =

pext

ρ
(6)

with σ0(k) = k ·V + ω0 the Doppler shifted frequency. Eliminating A(k) yields

B(k) = −
1

ρ

kpext tanh kh

[gk − kxSσ0(k)/k] tanh kh− σ2
0(k)

, (7)

This is the general solution of surface waves which can be extended to deep waters by approaching kh to ∞. Ship waves,
analysed in Refs. [11, 12], are given as the special case ω0 = 0.

III. DISPERSION RELATION AND RESONANCE FREQUENCY

We obtain the dispersion relation which permits nonzero solutions of the linearised equations of motion,

σ2
0(k)− [gk − kxSσ0(k)/k] tanh kh = 0. (8)

Nondimensionalising Eq. (8) with respect to length b and time
√
b/g yields

Ω0 +KFr cos γ = Σ±(K), (9)

where Ω0 = ω0

√
b/g, K = kb, and Fr = V/

√
gb is the Froude number. The angle between K and V is γ = θ − β, and the

nondimensional intrinsic frequencies are

Σ±(K) = ±
√
K tanhKH + ( 1

2
Frsb cos θ tanhKH)2 − 1

2
Frsb cos θ tanhKH, (10)

where H = h/b and Frsb = S
√
b/g is the “intrinsic shear Froude number”.

In deep water, KH →∞, the dispersion relation permits explicit solutions

KC,E =
1− Frs cos θ cos γ + 2τ cos γ +

√
∆

2Fr2 cos2 γ
, (11)

KB,D =
1− Frs cos θ cos γ + 2τ cos γ −

√
∆

2Fr2 cos2 γ
, (12)

∆ =(1− Frs cos γ cos θ)2 − 4τ cos γ, (13)
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FIG. 2: Graphical solutions of dispersion relation in deep waters. In the figures, slope of the tangent of curve Σ±(K) denotes
component of non-dimensional and intrinsic group velocity, CgK(K) = ∂Σ±/∂K; Slope of the line connecting one point on
curve Σ±(K) and origin denotes intrinsic phase velocity, C(K) = Σ±/K; Slope of the straight line Ω0 +KFr cos γ is the

projected component of non-dimensional moving speed of the source along direction of wave propagating - Fr cos γ.
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FIG. 3: Wave solutions varying with γ and θ based on dispersion relations depicted in Fig.(2) in deep waters. Subplots (a)-(c)
show a sub-resonant, strong shear situation (τ < τRes,min, ω < S), subplots (d)-(f) show a super-resonant, weak-shear

situation, τ > τRes,min, ω > S. γexcl is the angle at which ∆(γ±excl) = 0.

where τ = Ω0Fr = ω0V/g is a nondimensional frequency, Frs = V S/g is the Shear Froude number based on length of g/S2.
Subscripts B,C,D and E correspond to graphical solutions shown in Fig. (2). Eq. (11) agrees with Ref. [1] when Frs = 0.
Solutions of the dispersion relation Eq. (8) are discussed further in Sec. IV.

A necessary criterion for a Doppler resonance to occur is that roots D and E of the dispersion relation (see Fig. 2) flow
together in a single point F . In deep water this is clearly the case if the descriminant ∆ is zero, which we can rearrange into
criterion

τ = (1− Frs cos(γ + β) cos γ)2/(4 cos γ) (14)

while cos γ > 0 should be understood to hold. The smallest resonance frequency τRes,min (more than one resonance frequency
could be found due to presence of the shear current) is the smallest value of τ for which this can occur, i.e.,

τRes,min = min
γ

{
(1− Frs cos(γ + β) cos γ)2/(4 cos γ)

}
(15)

where the notation denotes that the minimum value is found with respect to γ in the sector (−π/2, π/2). When Frs = 0,
τRes = 1/4 is obtained in agreement with, e.g., Refs.[1, 6, 7]. We term the situation as sub-resonant when τ < τRes,min.
Further analysis of resonances are found in Ref. [14].
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FIG. 4: Special case of zero source velocity

Although the deep water limit simplifies the dispersion relation and permits analytical solutions, it also introduces subtleties
which the finite water case does not contain, via the phenomenon of cut-off, discussed in Ref. [13] for the 2D case. When KH
tends to ∞, the graph of Σ±(K, γ) as a function of K obtains a vertical section from the origin to the value −Frsb cos θ. The
situation for infinite water is shown in Fig. 2.

As can be seen in Fig. 2, different wave solutions of Eq. (8) are possible in various situations, marked by A - F in the figure.
Of these, only waves marked D can occur in front of a moving source because its group velocity exceeds the projection of V
onto direction k, while waves of type A are for a stationary source or wave components directed normal to V.

The kind of waves available depends on two criteria; whether τ < τRes,min (sub-resonant) or not, and whether Ω0 < Frsb (or
equivalently, ω0 < S) or not. We term the latter situation the “strong shear” case.
a. Weak shear. When Ω0 > Frsb, only figures 2a and b are possible, since Ω0 always exceeds Frsb| cos θ|. When

cos γ < 0 (rearwards propagating waves), there are always two waves, of type B and C, and when Fr cos γ = 0, there is a single
wave A. For forward propagating waves, cos γ > 0, however, the number of waves depends on whether the situation is sub-
or super-resonant. When τ < τRes, only waves D and E are possible. When τ > τRes, however, a sector of γ-values exists
including γ = 0 in which there are no wave solutions. In this case the resonance criterion Eq. (14) will be satisfied for two
values of γ, for which D and E waves flow together in a double root F .
b. Strong shear. When Ω0 < Frsb (or equivalently, ω0 < S), a third situation arises in propagation directions θ where

Ω0 < Frsb| cos θ|, that is to say, when |θ| < θ0 = arccos(S/ω0). The situation is shown in Fig. 2c, and implies that waves of
type A,B and D all tend to K = 0. These “infinite length” waves carry no energy and may simply be neglected [15]. This is
the phenomenon referred to by Tyvand & Lepperød as “cut-off”, whereby only one wave, of type C or E, may propagate along
directions within the downstream sector |θ| < θ0.

By way of example, a summary of which waves exist in which γ sectors is shown schematically for two different situations
in Fig. 3. In each sector of the pie charts, the possible wave solutions are listed with reference to Fig. 2. Fig. 3a-c shows a
strong-shear, sub-resonant situation, while Fig. 3d-e shows a weak-shear, super-resonant situation.

The special case of zero source velocity is exemplified in Fig. 4-a and 4-b, showing, respectively, graphical solutions to the
dispersion relation and relief plots of the surface elevation for two different shear strengths. Unlike the recent work of Ellingsen
& Tyvand for a submerged, oscillating point source[16], there is no critical layer contribution for a surface wave source.
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[11] S. Å. Ellingsen, J. Fluid Mech. 742, R2 (2014).
[12] Y. Li and S. Å. Ellingsen, J. Fluid Mech. (2016), (Accepted, in press).
[13] P. A. Tyvand and M. E. Lepperød, Wave Motion 52, 103 (2015).
[14] Y. Li and S. A. Ellingsen (2016), (Submitted).
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