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Abstract

The coordinate transformation method for cloaking a body
in electromagnetic and acoustic waves is extended to shal-
low water waves by noting variable correspondence in the
governing equations. As a result, it is shown analytically
that the fluid density should be anisotropic to achieve the
cloaking of a body in shallow water. Numerical computa-
tions are also made using a commercial software COMSOL
Multiphysics and good agreement with the cloaking in 2D
electromagnetic and acoustic waves is indicated.

1. Introduction

Cloaking refers to a phenomenon that makes an object trans-
parent, as its name suggests. The cloaking has originally
been studied in electromagnetic wave fields since the work
by Pendry et al. (2006) based on the coordinate transforma-
tion method. In recent years, this method is actively applied
to other wave fields, such as acoustic waves (Cummer et al.,
2007), seismic waves (Brule et al., 2014) and so on. In water
waves, Porter (2011) showed that the coordinate transfor-
mation method could not be extended to water waves and
studied the cloaking in terms of no scattered-wave energy
by changing the local water depth using a mild-slope ap-
proximation. Newman (2014) and Iida et al. (2015) studied
the cloaking with the idea of scattered-wave cancellation by
surrounding a body with an array of smaller cylinders. How-
ever, the scattered-wave cancellation method cannot cloak a
body itself. On the other hand, the coordinate transforma-
tion method can achieve it by creating a space where no wave
exists. This method is based on invariance of the governing
equations under the coordinate transformation. Although
most other waves are not invariant under such transforma-
tion, Cummer et al. (2007) demonstrated that the acoustic
and electromagnetic waves have equivalence in the equations
written in the polar coordinates at least for 2D problems.
Realizing the cloaking by the coordinate transformation im-
plies that the medium should be anisotropic, but it is be-
lieved not to exist in the nature. Shurig et al. (2006) demon-
strated a possibility to control such media (the permeability
and permittivity in electromagnetic waves) and realized the
cloaking by the so-called meta-material; this work has been
applied to acoustic waves (Zigoneanu et al., 2014) and water
waves (Farhat et al., 2008).

In this paper, we study the coordinate transforma-
tion method for cloaking a body in shallow water. It is
shown that the shallow-water cloaking can be achieved by
anisotropic fluid density. Furthermore, a transformation or-
der (Zhang et al., 2008) is introduced so as to reduce the
degree of divergence. Then it is confirmed to be able to
create a quiescent space around a body where waves cannot

propagate. A linear potential flow is assumed with long-wave
approximation and the software COMSOL Multiphysics is
employed in numerical computations.

2. Theory

2.1 Coordinate transformation of Maxwell’s equations

The cloaking was originally demonstrated for electromag-
netic waves which are governed by a set of partial differ-
ential equations; these are called Maxwell’s equations and
described as

∇×E = −μ0μ
∂H

∂t

∇×H = +ε0ε
∂E

∂t

⎫⎪⎬
⎪⎭ (1)

where E and H denote the electric and magnetic fields,
respectively; μ and ε are the permeability and permittiv-
ity, respectively; and subscript 0 means quantities in vac-
uum. The coordinate transformation is based on invari-
ance of Maxwell’s equations. Let us consider the coordinate
transformation between the original Cartesian mesh x and
a distorted mesh q. Then (1) can be transformed as

∇q × Ê = −μ0 [ μ̂ ]
∂Ĥ

∂t

∇q × Ĥ = +ε0 [ ε̂ ]
∂Ĥ

∂t

⎫⎪⎬
⎪⎭ (2)

In order to keep the same form as (1) under the coordinate
transformation, variables should take the following forms

Ê(q) = ATE(x), Ĥ(q) = ATH(x) (3)

[ μ̂ ] =
AμAT

|A| , [ ε̂ ] =
A εAT

|A| (4)

where A is the Jacobian transformation matrix between the
original and transformed coordinate systems, and its coeffi-
cient can be written as

Aij ≡ ∂qi
∂xj

(5)

It should be noted that the permeability and permittivity
become tensors as shown in (4). Therefore these parameters
should possess anisotropic properties.

We consider the coordinate transformation to compress a
space from a cylindrical region to a annular region so as to
cloak an object in the annulus

r′ =
b− a

bn
rn + a, θ′ = θ, z′ = z (6)

where (r, θ, z) denotes the original cylindrical coordinate sys-
tem; (r′, θ′, z′) a new cylindrical coordinate system for cloak-
ing; a and b are inner and outer radii of the cloaking region



respectively, and n is the transformation order. Results of
these transformations are shown in Figs. 1 and 2. Fig. 1 is
the case of n = 1 which Pendry et al. (2006) had demon-
strated and Fig. 2 is the case of n = 1/3 which Zhang et
al. (2008) had proposed for an efficient transformation or-
der. According to (4), tensor components in the cylindrical
coordinate system can be obtained as

μ̂r

μ
=

ε̂r
ε

= n
r − a

r
μ̂θ

μ
=

ε̂θ
ε

=
1

n

r

r − a

μ̂z

μ
=

ε̂z
ε

=
1

n

b2

(b− a)2/n
(r − a)2/n−1

r

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(7)

Here we have rewritten r′ as r. Eq. (7) indicates that when
r = a, the θ-component of permeability and permittivity
diverges. A smaller value of transformation order n (such
as n = 1/3) can practically reduce this divergence feature
as shown in Fig. 2. The impedance at r = b is equal to 1.0,
which matches with the outer region.
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a
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Fig. 1 Cloaking coordinate system with n = 1.

b

a
r'

Fig. 2 Cloaking coordinate system with n = 1/3.

2.2 Equivalence to shallow-water equations

If the coordinate transformation method can be applied to
other waves, the cloaking can also be achieved in those
waves. However, this is normally not the case in most real
waves. In linear water waves, Porter (2011) confirmed that
the governing equations are scalar and hence not invariant
under the coordinate transformation. On the other hand,
Cummer et al. (2007) demonstrated the cloaking in 2D
acoustic waves by noting the equivalence between acoustic
and electromagnetic waves; that is, they showed variable
equivalence in the equations described in the polar coordi-
nate system. We can show that the same idea can be ex-
tended to 2D water waves especially under the long-wave
approximation known as shallow water.

First, let us consider expressions of 2D Maxwell’s equa-
tions given by (1) in the polar coordinate system. By assum-
ing z-invariant transverse electric waves and time harmonic
variation (with circular frequency ω), Maxwell’s equations
are written as

iωμr(−Hr) = −1

r

∂(−Ez)

∂θ

iωμθ Hθ = −∂(−Ez)

∂r

iωεz(−Ez) = −1

r

∂(rHθ)

∂r
− 1

r

∂(−Hr)

∂θ

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(8)
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Fig. 3 x-z plane of shallow water.

In the same way, water-wave equations will be considered
with cylindrical coordinate system. Assuming inviscid fluid
with irrotational motion and linear long-wave approxima-
tion (the water depth h is sufficiently smaller than the wave
length λ), we can write the Bernoulli’s pressure equation
and Euler’s equation in the form

∂P

∂t
= −ρc2∇ · u

∂u

∂t
= −1

ρ
∇P

⎫⎪⎬
⎪⎭ (9)

where P is the pressure; ρ the fluid density; c the phase
velocity equal to

√
gh; and u the velocity vector. They can

be expressed in the cylindrical polar coordinate system as

iωρθ uθ = −1

r

∂P

∂θ

iωρr ur = −∂P

∂r

iω
1

ρz
P = −1

r

∂(rur)

∂r
− 1

r

∂uθ

∂θ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(10)

where
ρz ≡ ρc2 (11)



Comparison of (10) with (8) can find the following corre-
spondence: [

−Ez,Hθ,−Hr, μθ , μr, εz
]

←→
[
P, ur, uθ , ρr, ρθ, 1/ρz

]
(12)

Therefore if we assume an anisotropic fluid density as in (7),
the tensor components of fluid density may be written as

ρr = ρ0
1

n

r

r − a

ρθ = ρ0 n
r − a

r

ρz = ρ0c
2
0 n

(b− a)2/n

b2
r

(r − a)2/n−1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(13)

Here ρ0 is the fluid density outside of the cloaking region.
Shallow water is governed by the 2D Helmholtz equation

which satisfies the continuity equation, the Euler’s equation,
and the free surface and bottom boundary conditions. It is
written as

∇ ·
(
− ρ−1

0 ∇φ
)
− ω2

ρ0c20
φ = 0

on the general fluid region (14)

Eq. (14) must be modified on the cloaking region in terms of
the density tensor as follows:

∇ ·
(
− [ρ−1 ]∇φ

)
− ω2

ρz
φ = 0

on the cloaking fluid region (15)

Note that (15) is an expression in the Cartesian coordinate
system even though (13) is written in the cylindrical coor-
dinate system. In practical computations, it is necessary to
rewrite (15) with the coordinate transformation matrix.
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Fig. 4 x-y plane of shallow water.

3. Results and Discussions

In order to solve (14) and (15) simultaneously for a case
shown in Fig. 4, a commercial software, COMSOL Multi-
physics, was employed. COMSOL Multiphysics is a general-
purpose software platform, based on the finite element
method, for modelling and simulating physics-based prob-
lems and hence capable of treating anisotropic property.

Since an anisotropic fluid density should be considered, this
software is suitable to simulate the cloaking phenomenon in
the present study. In numerical computations, we fix radii
of inner and outer cloaking regions such that a = 1.0 and
b = 2.0, wave length λ = 1.5, and water depth h = 0.01. (All
quantities are normalized with fluid density of general region
ρ0, incident wave amplitude ζa, and radius of inner cloaking
region a.) A cylinder with radius a is bottom-mounted as
seen in Fig. 3.

Fig. 5 Spatial wave pattern generated by transformation
order n = 1, cloaking a bottom-mounted cylinder.

Figure 5 is a result with transformation order n = 1. Ob-
viously the incident wave is not scattered by the cylinder
and transmits downstream with same form as that of ini-
tial incident wave, unlike the situation of a cylinder in the
fluid with uniform density. This result is very similar to the
results of electromagnetic cloaking shown by Pendry et al.
(2006) and of acoustic cloaking by Cummer et al. (2007).
Therefore we may say that the coordinate transformation
method can be extended successfully to shallow water.

Fig. 6 Spatial wave pattern in the shallow water by trans-
formation order n = 1 without the cylinder.

Figure 6 is also a result with transformation order n =
1, but the bottom-mounted cylinder is taken out from the
inner region. Instead, the inner region is filled with constant
density ρ0. Mathematically the coordinate transformation
method should work even for a case without the body and
thus no scattered waves may be expected. However, Fig. 6
shows obviously wave reflection. This is because ρr and
ρz diverge when r = a. Therefore the numerical accuracy
around r = a is not sufficient and consequently the entire
system of the problem cannot be solved precisely.

In order to avoid this inconvenience, another choice of
transformation order is helpful. As shown in Fig. 2, the case



of n = 1/3 can shift the region around r = a to outward of
the cloaking region and hence the diverging feature can be
reduced. Computed results are shown in Fig. 7, from which
we can see few waves propagating into the inside domain.

Fig. 7 Spatial wave pattern generated by transformation
order n = 1/3 without the cylinder.

In this case, structures of any shape can be put in the
interior region, such as a T-shape object, because the object
is not affected by waves, as shown in Fig. 8.

The cloaking is a phenomenon to make an object trans-
parent. This description includes two properties. First is to
make incident waves propagate without being scattered by
an object. Therefore we can observe waves (light, acoustic
or water) behind a cloaking device. Second is to avoid wave
invasion into the inside cloaking region. Therefore a space
around the body cloaked by the device must be quiescent.
First property is satisfied by not only the coordinate trans-
formation method but also the scattered-wave cancellation
method (such as Newman, 2014). If we focus ourselves on
the wave itself, the first property is enough. However, most
engineering interests are not waves but floating bodies on the
free surface. The scattered-wave cancellation method can re-
duce the wave drift force acting on floating bodies, but other
hydrodynamic forces on bodies are not zero. This is because
the scattered-wave cancellation method does not satisfy the
second property. In contrast, the coordinate transformation
method can satisfy both properties. Thus, once it is put in
the cloaking region as in Fig. 8, no forces act on that body.
Because of this, the present study holds a practical appli-
cation to operate offshore structures safely regardless of sea
conditions.

From the results above, we can see that the cloaking can
be realized with an anisotropic fluid. Although the present
study is just a numerical study, we note that experimental
possibility is already demonstrated by Farhat et al. (2008).

4. Conclusions

It has been demonstrated that the idea of cloaking in electro-
magnetic waves using the coordinate transformation method
can be extended to the case of shallow-water waves, by not-
ing the correspondence of variables in the governing equa-
tions between water waves and electromagnetic waves. As a
consequence, the fluid density must be anisotropic to achieve
the cloaking of a body in shallow water.

Numerical computations have also been made using
a commercial software COMSOL Multiphysics, and good
agreement with the cloaking in 2D electromagnetic and
acoustic waves has been indicated. Furthermore, it has been

Fig. 8 Spatial wave pattern in cloaking by transformation
order n = 1/3 with a T-shape object put inside
interior quiescent region.

suggested that the wave reflection and invasion observed due
to diverging feature of anisotropic density can be mitigated
by selecting a smaller value for the transformation order, in
particular for the case of n = 1/3 no wave scattering from
the inside region and creation of a quiescent interior region
are confirmed. Once this situation could be realized, any
structures can be put in a cloaking region without any in-
fluence from the waves.
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