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Introduction
Due to the limited rated power capacity by device of the present WEC technologies, it is nowadays well-accepted
that commercial exploitation of wave energy involves the installation of a large number of wave energy converters
(WECs) in an array. Hydrodynamic interactions can affect the efforts on the devices and modify their total energy
production in different ways depending on the layout. Forces due to wave radiation and diffraction are represented
by the linear first-order radiation and excitation force coefficients. However, their direct computation for large arrays
of bodies (O ∼ 100) is beyond the capabilities of widely available standard BEM codes.

The interaction theory (IT) developed by [1] enables one to circumvent such limitation. It is based on knowing how
an individual isolated device scatters and radiates waves. For this, two hydrodynamic operators known as Diffraction
Transfer Matrix (DTM) and Radiation Characteristics (RC) need to be computed. The methodology to calculate
them for axisymmetric bodies was provided by [1] and its generalization for arbitrary geometries was derived by [2].
The IT by [1] has been used to study multi-moduled floating offshore structures [3, 4], large fields of ice floes [5], very
large floating structures [6] and, recently, wave energy converter arrays [7].

This paper presents a comparison of the hydrodynamic operators DTM and RC of a cylinder computed with
the BEM solver NEMOH1, in which the methodology of [2] has been implemented, and the ones obtained with the
alternative approach developed and validated by [7]. In addition, a comparison of the wavefield of a small array of 4
freely floating cylinders computed using both the interaction theory and with a direct NEMOH calculation is shown.

Interaction Theory
In a large array, waves emanating from each body (due to scattering and radiation) will propagate and interact with
its neighbours. This will lead to a succession of scattering events which are referred to as multiple-scattering problem
[8]. In this context, the different forms of the velocity potential (incident, scattered and radiated) are expressed in
the cylindrical reference system local to each body j of the array by means of a superposition of partial cylindrical
waves:
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where ASj , AIj and Rkj are the complex scattered, incident and radiated vectors of partial waves coefficients respectively.
Even though the series are theoretically infinite, for practical computations they need to be truncated. Summations
go from m = −M to M and from n = 0 to N for outgoing waves indices, and from q = −Q to Q and l = 0 to L for
incident wave indices. H

(1)
m is the Hankel function of the first kind of order m, Iq and Km are the modified Bessel

functions of the first and the second kind of orders q and m respectively and Jq is the Bessel function of the first kind
of order q.

(a) m = 0, n = 0 (b) |m| = 1, n = 0 (c) |m| = 2, n = 0 (d) m = 0, n = 1 (e) |m| = 1, n = 1 (f) |m| = 2, n = 1

Figure 1: Partial waves modes. Progressive term Re{H(1)
m (r)} (a - c); evanescent term Re{Km(r)} (d - f)

One of the key aspects of the interaction theory by [1] is that the study of the wave scattering on the whole array
composed of Nb bodies is undertaken by focusing on one body at a time. If this body is referred to as j and its
neighbours as i, the total incident potential to j is expressed as:
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1http://lheea.ec-nantes.fr/doku.php/emo/nemoh/start



where aj are the cylindrical coefficients of either an ambient plane wave (diffraction problem) or the radiated wave
by a body i of the array undergoing motion in a degree of freedom k (radiation problem) expressed as aj = TT

ijR
k
i ,

Ai are unknown scattered coefficients and Tij represents the transformation matrix which depends on the relative
position between bodies j and i. The latter enables one to express scattered (or radiated) waves from a body i as
incident to body j in its local reference system.

The incident and scattered partial waves coefficients by an isolated body can be related as ASj = BjA
I
j by means

of a linear operator known as Diffraction Transfer Matrix
(
Bj

)
. Substitution of the partial wave coefficients in (3)

into the definition of the DTM leads to a system of equations to be solved for the unknown scattered coefficients:
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The Diffraction Transfer Matrix (DTM) and the Radiation Characteristics (RC) are calculated with the body in
isolation. Two methodologies to compute them are available in the literature [2, 7]. Results obtained with the
former, which has been implemented in NEMOH, are presented and compared with the values computed using the
latter.

Validations
Diffraction Transfer Matrix
The methodology developed by [2] to find the elements (Bj)

mq
nl of the DTM consists of two steps. First, the solution

to a diffraction problem where the incident wave is a cylindrical partial wave
(
ψIj
)
lq

is found. Then, the scattered

potential represented by the source strengths σlqj is expressed in the base of partial wave functions by means of the
Green’s function in cylindrical coordinates developed by [9] leading to:
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with SHj the wetted surface of the body and C0 and Cn constant coefficients.
The main aim of the alternative procedure derived by [7] is to compute the elements of the DTM using only plane

incident waves. As long as a large enough number of pairs of scattered/incident vectors of coefficients is known in
advance, the definition of the DTM (ASj = BjA

I
j ) can be transformed into a system of equations to solve for its

elements. The vectors of incident partial waves are known from an analytical expression [2] whereas the elements of
the associated vectors of the scattered coefficients can be derived by means of a Fourier Transform of the scattered
potential on the body circumscribing cylinder of radius r0:
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Even if evanescent terms from the scattered potential can be identified using (8), the use of only plane progressive
incident waves (with no evanescent components) prevents the calculation of the DTM terms relating incident and
scattered evanescent partial waves using this procedure. The DTM elements computed with both methodologies,
which make use of different notation conventions and a different scaling of the partial wave coefficients, are related
by:
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−m,−q = (B)Method [7]

m,q (9)

Figure 2a shows a comparison of the progressive terms of the DTM computed using both methodologies and with
the semi-analytical solution by [10]. A very good agreement of results is observed. The only non-zero DTM terms
correspond to pairs of equal incident (q) and outgoing (m) angular modes. This is a particular feature of axisymmetric
geometries such as a truncated vertical cylinder.The numerical singularity observed at a ka of approximately 2.3
corresponds to an irregular frequency. The new release of the BEM solver NEMOH will enable its removal.
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Figure 2: Real part of the DTM (a) and RC (b) progressive terms for a truncated vertical cylinder of 3m radius
(a), 6m draft in a 10m water depth. Markers +, � indicate results from NEMOH using method [2] for two different
integration schemes.

Radiation Characteristics
The same principle applied for the calculation of the DTM with both methodologies can now be used to obtain the RC
vector. With respect to [2], the radiation problem associated with a motion mode k of the body under consideration is
solved first. Then, the source strength distribution σjk is used in conjunction with the Green’s function in cylindrical
coordinates to express the radiated potential in the base of partial waves leading to expressions (10) and (11) for the
RC:
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With regard to [7], the same formulas (7) and (8) are used to express the radiated potential in terms of partial
cylindrical wave functions. In this base, the coefficients are known as Radiation Characteristics. Apart from different
notation conventions and a different scaling of the partial wave coefficients, the use of two different BEM solvers
(methodology by [2] has been implemented in NEMOH whereas WAMIT2 has been used in conjunction with [7])
results in the following relationship between the Radiation Characteristics:
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where aR−mk are the RC in the notation of [7] and Rmk in the notation of [2].
Figure 2b shows a comparison of the progressive terms of the surge RC computed using both methodologies and

with the semi-analytical solution by [10]. A very good agreement of results is observed. For this mode of motion, it
can be observed that only modes m = 1 and m = −1 are non-zero. This is explained as the wave generated by the
motion of a cylinder in surge corresponds to the partial wave shown in Figure 1b.

Interaction Theory
The free surface elevation for a small array of 4 freely floating truncated vertical cylinders has been computed by
means of the interaction theory and compared with direct calculations using NEMOH (Figure 3) for a regular wave
of propagation direction β = 0 and wavelength λ/a = 10 with a the radius of the cylinders. The total wave elevation
is the sum of incident, scattered and radiated wave elevations and includes the computed body motions. A very good
agreement between results can be observed in the whole domain when no evanescent modes are used with the highest
differences being located at the vicinity of the bodies. The use of a higher evanescent modes truncation reduces the
error at these regions and convergence with the direct computation results by NEMOH is achieved.

Conclusion
The calculation of the DTM and the RC has been implemented in the open source BEM solver NEMOH using the
methodology of [2]. Results of the hydrodynamic operators of a truncated vertical cylinder have been compared
with the methodology developed by [7] and with the semi-analytical solution by [10] and a very good match has

2http://www.wamit.com/
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Figure 3: Magnitude of surface elevation for an array of 4 cylinders of 3m radius, 6m draft in a 50m water depth
with a separation distance of 12m. Plots c, d, e, f show the percentage difference between the wave fields computed
with the interaction theory (IT ) and the direct calculation using NEMOH (N) as a function of the evanescent modes
truncation L. Results are normalized by the amplitude of the incident wave (A). Propagation direction is defined
from left to right.

been obtained. Wave fields computed with the interaction theory by [1] for a small array of 4 truncated vertical
cylinders have been compared to direct computations using NEMOH and a very good agreement has been observed.
A decrease of the error at the vicinity of the bodies when the number of evanescent modes is increased has been
found as expected.
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