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Highlights

• Formulation of a coupled auxiliary function approach is derived for indirectly calculating
hydrodynamic wave forces in case of multiple floating bodies.

• Interconnection between two floating bodies is mathematically modeled by a constraint matrix
method.

1 Introduction

This abstract presents an indirect method for calculating hydrodynamic forces on multiple floating
bodies in a nonlinear potential flow model. This is motivated by the fact that a direct method in
calculating the forces in time-domain simulations, i.e., Fi = −ρ

∫
SB

(φt+
1
2∇φ·∇φ+gz)nidS, is prone

to numerical instability for cases of floating bodies, which is caused by the inaccurate evaluation of
the time derivative φt = ∂φ

∂t by a simple backward difference scheme (Tanizawa, 1995).
Several methods have been developed to compute φt in the literature. An acceleration potential

method was presented by (Tanizawa, 1995), who defined an acceleration potential Φ as Φ = φt +
1
2∇φ·∇φ. This method involves the evaluation of surface local curvature, which is extremely difficult
in 3D cases where the body geometry is rather complicated. Vinje and Brevig (1981) introduced
a mode decomposition method which decomposes φt into modes corresponding to each degree of
freedom of body motions, plus a mode due to velocity potential. Each mode component can be
obtained by calculating its respective boundary integral equation. This method was adopted by
Cointe et al. (1990) in their 2D numerical wave tank. Nonetheless, much additional computational
effort is required while evaluating each mode component. Notably, an auxiliary function approach
for indirect calculation of wave forces was proposed by Wu and Eatock Taylor (1996). They defined
a set of auxiliary functions ψi which correspond to each degree of freedom of the body motions.
Instead of calculating the time derivative φt itself, they evaluated its integral over the wetted body
surface as a whole term,

∫
SB
φtnidS. This abstract extends the application of auxiliary function

approach to the case of multiple bodies, which results in a coupled motion equation system.
To mathematically model an interconnection between two floating bodies, a constraint ma-

trix method is incorporated into the existing time-domain potential flow model, where different
types of interconnections are represented by proper constraint matrices depending on the system
configuration.

2 Formulation

The schematic diagram in Fig. 1 defines a circular wave tank, with two bodies floating in the tank.
A space-fixed global coordinate system Oxyz and a body-fixed local coordinate system O′x′y′z′

are defined. The global origin O is placed on the undisturbed water surface at the center of the
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Figure 1: Definition of a circular numerical wave tank
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Figure 2: Two floating barges

circular tank with its z-axis pointing upward; the local origin O′ is fixed at the center of gravity
Xg = (xg, yg, zg) of the corresponding body.

Within the framework of fully nonlinear potential flow theory, a time-domain numerical model
was presented by Feng and Bai (2015). In order to incorporate the auxiliary function approach
into that model, we define two sets of auxiliary functions, i.e. ψi (i = 1, 2, · · · , 6) for Body 1
and ψi (i = 7, 8, · · · , 12) for Body 2. Naturally we let the auxiliary functions satisfy the Laplace
equation ∇2ψi = 0 in the fluid domain. The following boundary conditions are imposed.
On the free surface SF : ψi = 0 (i = 1, 2, · · · , 12).
On the tank side wall SW : ∂ψi

∂n = 0 (i = 1, 2, · · · , 12).

On the surface of Body 1 SB1:
∂ψi

∂n = n1,i (i = 1, 2, · · · , 6), ∂ψi

∂n = 0 (i = 7, 8, · · · , 12).

On the surface of Body 2 SB2:
∂ψi

∂n = 0 (i = 1, 2, · · · , 6), ∂ψi

∂n = n2,i−6 (i = 7, 8, · · · , 12),
where n1,i and n2,i are the components of the normal unit vector on Body 1 and Body 2 respectively.

The above mixed boundary value problems for the 12 auxiliary functions are solved simultane-
ously with the boundary value problem for the velocity potential. Green’s identity constructs the
relationship between ψi and φt, which reads∫∫

S

(
φt
∂ψi
∂n
− ψi

∂φt
∂n

)
dS = 0. (1)

Boundary conditions for φt were presented in Wu and Eatock Taylor (1996). Substituting the
boundary conditions for ψi and φt into Eq. (1) yields∫

SB1

φtn1,idS = ΓFi + C
(1)
ij ·A

(1)
i + E

(1)
i +D

(1)
ij ·A

(2)
i + E

(2)
i (i = 1, 2, · · · , 6) (2)

∫
SB2

φtn2,i−6dS = ΓFi + C
(2)
ij ·A

(2)
i−6 + E

(1)
i +D

(2)
ij ·A

(1)
i−6 + E

(2)
i (i = 7, 8, · · · , 12) (3)

where A
(1)
i and A

(2)
i are accelerations of Body 1 and Body 2, and

ΓFi =

∫
SF

(gz +
1

2
∇φ · ∇φ) · ∂ψi

∂n
dS (i = 1, 2, · · · , 12) (4)

C
(1)
ij =

∫
SB1

ψinjdS; D
(1)
ij =

∫
SB2

ψinjdS (i, j = 1, 2, · · · , 6) (5)

C
(2)
ij =

∫
SB2

ψinjdS; D
(2)
ij =

∫
SB1

ψinjdS (i = 7, 8, · · · , 12; j = 1, 2, · · · , 6) (6)



E
(1)
i =

∫
SB1

ψiΘ
(1)dS; E

(2)
i =

∫
SB2

ψiΘ
(2)dS (i = 1, 2, · · · , 12) (7)

Θ(k) = −ξ̇(k) · ∂∇φ
∂n

+ α̇(k) · ∂
∂n

[
(X−X(k)

g )× (ξ̇
(k) −∇φ)

]
(k = 1, 2) (8)

Note that the accelerations remain unknown. We now consider the motion equation for Body 1

M
(1)
ij A

(1)
i = −ρ

∫
SB1

φtn1,idS − ρ
∫
SB1

(gz +
1

2
∇φ · ∇φ) · n1,idS (9)

where M
(1)
ij is the mass matrix of Body 1. Substituting Eq. (2) into the motion equation Eq. (9)

leads to the following in matrix form as

[M1 + C1]A1 + D1A2 = Q1. (10)

A similar motion equation for Body 2 can be obtained. Combining these two results in the following[
M1 + C1 D1

D2 M2 + C2

] [
A1

A2

]
=

[
Q1

Q2

]
. (11)

In this way, the accelerations of Body 1 and Body 2 are solved, and the hydrodynamic forces are
computed by substituting back the accelerations.

With interconnections, the bodies are constrained and additional unknown constraint forces at
the connections appear. The motion equations need to be modified to include the constraint forces.

3 Numerical results

For demonstration and validation, we first consider two freely floating barges asymmetrically ar-
ranged with a relatively large spacing between them, as shown in Fig. 2. The two barges are 2.0 m
long and 1.0 m wide, separated by a distance of 1 m. They have a draft of 0.3 m and the center of
gravity of each barge is assumed to locate coincided with its center of buoyancy in still water, i.e.
zg = −0.15 m. The water depth is 3 m and the tank radius is four times the incident wave length.
The barges are assumed to have a uniform mass distribution.
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Figure 3: Motion responses of Barge 1 with a 0 degree incident wave of frequency ω = 6.0 rad/s

Figure 3 plots typical time histories of motion responses of Barge 1 in a 0 degree incident wave of
frequency ω = 6.0 rad/s and amplitude A = 0.005 m. It is clear that there exists a drift component
in the motions of surge while heave and pitch oscillate around zero. This is because there is no
restoring force, resulting in drift effect in the directions of surge, sway and yaw, due to the mean
wave forces. In order to compare the first order response with a linear model, FFT is performed
to obtain each harmonic component. With the motion responses of heave, roll and pitch (no drift
effect), we can directly perform the FFT to obtain their response spectra. As for surge, sway and



yaw, we eliminate the drift effect by subtracting the displacement due to the mean acceleration
and velocity, to recover the single-harmonic dominated response. Fig. 4 shows the comparisons of
the first order motions of Barge 1 between the present model and the commercial software package
HydroStar R© over the frequency range 5-8 rad/s. The forces are normalized by the incident wave
amplitude. The overall agreements are generally satisfactory. It has to been borne in mind that
higher harmonics can also be captured using the present nonlinear model.
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Figure 4: Comparisons of first order motions of Barge 1: (a) Surge, (b) Heave and (c) Pitch

A second case considered here is two tandem arranged barges connected by a rigid bar subject
to a 0 degree wave of low steepness, as studied in Newman (1994). Fig. 5 shows the comparison of
heave response with the results of Newman (1994). Our results are essentially very close to those
of Newman (1994), which well validates the present model. More results will be presented in the
workshop.
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Figure 5: Comparison of heave response of rigidly connected barges
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