Underwater explosions near marine structures: a Dynamic Fluid-Structure Domain-Decomposition strategy
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Historically underwater explosions (UEs) have been investigated for their huge military relevance, but they remain an
important issue also for civil marine applications. As an example, UEs can occur near or on oil-gas plants due to severe
environmental conditions or human errors and this has substantial consequences for the production. Preliminary informa-
tion about time scales of the phenomenon and knowledge about possible strategies on how to limit the consequences of
its interaction with close-by structures is crucial to make the proper decisions. A numerical investigation would in gen-
eral require a 3D compressible (at least) two-phase hydro-dynamic solver strongly coupled with a suitable model of the
involved structure. Because the CPU-time requirements are still too high for reliable and feasible predictions, a Domain
Decomposition (DD) strategy has been proposed by Colicchio ef al. (2013) and Colicchio et al. (2014) and applied to a
fully coupled fluid-structure analysis by Colicchio et al. (2015). Here, the DD is further extended as Dynamic DD (DDD)
to overcome limits of applicability in time. The dynamic strategy proposed is not limited to UEs problems and to the
two coupled solvers involved. When examining the UE interaction with a marine structure, like a surface ship, one can
distinguish basically two stages: the first one, with important compressible effects and local fluid-structure interactions;
the second one, with global consequences for the structure, possibly involving large deformations and damages as well
as free-surface waves generation. The present research focuses on the first stage but the proposed DDD strategy can be
adopted also for the second stage.

Basic hybrid method Unless the underwater explosion occurs very close to a boundary, gravity effects can be neglected
and the UE features a radial symmetry with the formation of a spherical gas bubble, rapidly expanding and eventually
oscillating. The initial acoustic phase and the later cavity phase are relevant for structures not far from the initial explosion.
Based on this, the developed DD solves the problem through a weak coupling between a 1D radial blast solver (solver
1) and a 3D compressible flow solver (solver 2). Solver 1 is a first-order finite-difference (FD) scheme in space and time
based on the Harten-Lax-Van Leer (HLL) approximate Riemann solver while solver 2 is a FD method with second order
accuracy in space and third order in time treating the fluxes with a Harten-Lax-van Leer contact (HLLC) Riemann solver.
Solver 2 is used to examine the UE interaction with a marine structure modelled either as rigid or as a deformable 3D
plate assuming small deformations and orthotropic plate theory (see e.g. Faltinsen 1999). An Adaptive Mesh Refinement
(AMR) limits the computational time by reducing dynamically the local cells size only when the flow gradients overcome
a threshold value. The basic DD identifies instead statically the 1D and 3D sub-domains, i.e. at the beginning of the
simulation.

Left plot of figure 1 shows the evolution of the structure UE-induced pressure assuming a numerical UE equivalent
to the experiments by Hung et al. (2005) used for validation of the method (see Colicchio et al. 2014). The explosion

S i
S|
|
6E+07
3E+07

0 ..

L L L 1 L L L 1 L L L 1 L L L 1 L L L

0.002 0.0022 0.0024 0.0026
t(s)

Figure 1: Basic hybrid method (see Colicchio ef al. 2014). Left: pressure, relative to the water ambient pressure ~
0.1 MPa, at the center of the plate from approximate (green solid lines) and full (red dashed lines) FSI. Center and right:
development of radial asymmetric features. The slice shows also a hole where the radial 1D solution is used and highlights
the dynamic mesh refinement provided by the AMR strategy.

takes place at 4m from a parallelepipedal structure with flexible bottom. The gas cavity has initial radius ry = 0.16m,



densitypy = 1630.0K g/m? and pressure pg = 8.381.10 Pa. The results refer to weak and strong fluid-structure interac-
tion (FSI) strategies and highlight the relevance of a strong coupling for a proper detection of cavitation phenomena near
the structure. During the interaction, due to the wave reflection from the body, radial asymmetries develop in the flow as
shown in the center and right of figure 1. When they reach DB, the basic DD must be stopped. This limitation is overcome
by the DDD.

Dynamic domain decomposition strategy Very few works exist in literature with dynamic evolution of the boundaries
between solvers in DD strategies. An example can be found in the work by Sriram er al. (2014), where an Improved
Meshless Local Petrov Galerkin method and a finite element method are strongly coupled to model breaking and non
breaking waves. Colicchio et al. (2015) use a DDD strategy to strongly couple a Finite Difference Navier-Stokes (FD-
NS) solver with a Lattice Boltzmann Method (LBM) to follow the flow evolution downstream a cylinder.

Here, the DDD is applied as a weak (one-way) coupling. The fact that the information travels only from the 1D to
the 3D sub-domain makes more challenging the identification of the boundary and its tracking in time. One must stress
that, even if as time goes on the solver-1 zone reduces in favor of the more expensive solver-2 region, the developed
DDD is very advantageous compared with using the full 3D solver for the whole evolution. This is because: (1) at the
beginning the 3D domain is very limited and the evolution of UE effects can be accuratey and efficiently described by the
radial solver; (2) later on the 3D domain enlarges but the flow features can be captured with less refined grid than at the
initial stage. To explain the DDD strategy the same UE as described above is examined but it is assumed to occur at the
centre of a closed cubic rigid tank with size 6m and filled with water. At the initial stage of the evolution, solver 1 can
be used almost everywhere while the 3D features are modelled only near the tank sides (see left side of figure 2) using
solver 2. The 3D domain is dynamically divided into AMR blocks, each with, say, nxb, nyb and nzb cells in =,y and z
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Figure 2: Left and center: central section of the 3D domain with the initial decomposition (left) and the decomposition
after the reflection from solid boundaries (center). The 3D algorithm is used in the grey shaded area, the 1D solver in the
white area. The blue line represents the evolution of the compression wave generated by the explosion. Right: domain
subdivision along the local normal direction at the DDD boundary with the definition of the auxiliary zones with tag +
and -.

directions. Moreover, when the compression wave from the explosion is reflected by the tank walls, the DDD boundary
(DB) modifies dynamically enlarging in time the area computed by solver 2, as shown in the center of figure 2 which
refers to a later time instant. This is obtained through the following algorithm.

Let us move along the local normal direction of the DDD boundary and assume that we have the zones for solver 1
and 2 in the left and right of the boundary, respectively (see in the right of figure 2). Across DB an overlapping region
exists (tag +) where the solution smoothly goes from the solver-1 to solver-2 values through a weighting law based on the
position relative to DB. This means that both solvers are used to analyze the problem in the region with tag +. Actually,
within the weak coupling, solver 1 models the fluid in a wider domain than the tank and as the tank walls were not there.
This prediction is used to initialize the solution in solver 2 sub-domain and to provide information to it in time through
the DDD boundary. This implies that only solver 2 can enlarge on regions of domain previously described by solver 1. To
assess when this has to happen, a solver-2 region near and until the overlapping is defined at the beginning and updated in
time to compare the solutions from the two solvers (tag -). Every n time steps, with n chosen as a compromize between
solution accuracy and efficiency, a three-step check is performed: (1) blocks with tags - and + are searched. Each block
with tag - becomes a solver-2 block if |psp — p1p/(P3D + Pip)| > 0.05, with p3p, pip and psp — p1p the block mean
values of the density p from the 3D and 1D solvers and their difference. Each block with tag + is labelled as a solver-1
block and listed for a second check; (2) listed blocks with solver-2 neighbors receive the tag - otherwise are stored for a
third check; (3) listed blocks with neighbors with tag - receive the tag +. At this stage the regions with pure 1D and 3D
solutions and their overlapping are identified and the problem can be stepped in time accordingly. This check is performed
on the AMR blocks because at cell level would be much more expensive.



DDD application to a 1D case The 1D version of the dynamic hybrid solver is used to study the collapsing bubble
labelled as case 1.A by Wardlaw (1998) with centre in z = Om and assuming a wall at x = 3.1m for solver 2 and much
longer domain for solver 1. When the compression wave from the bubble is reflected from the wall the DDD should move
the DB to allow solver 2 to follow the backward motion of the shock. Figure 3 shows the evolution of the wave front
calculated both with solver 1 everywhere and with the DDD. At the initial time shown the shock front propagates from
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Figure 3: 1D solution in dashed line and DDD solution in solid line for the case of a 1D problem at t=0.288-0.328-0.368-
0.408-0.448is.

one domain to the other without any problem and the two results are superimposed. When the wave front reaches the wall,
the DDD sees a reflection of the shock wave that moves backwards, the solution is able to capture this behaviour with the
solver-2 domain enlarging from the third time instant shown on.

This study highlighted that within a DDD strategy the overlapping region across DB must be wider than for a static
DD to ensure a smooth transition of the solution: when using a thickness four times the local mesh size Az, as for the
basic hybrid method proposed by Greco et al. (2014), the continuous variation of the DB position and the approaching of
the reflected wave cause local discrepancies between the solvers that can lead to unphysical solution oscillations at DB.
The smoothing thickness should be at least 10Ax. In the present study a cosine law, say I,, was identified as suitable
interpolation function with parameters the distance from DB, the number of cells per block, nxb, and a coefficient esp.

DDD application to a 3D case The 1D smoothing law for the overlapping region has been extended to 3D problems as
the product of three cosine functions, i.e. I = I.I,I,. Different values of eps can be suitably selected for each direction
so to reduce the anisotropy of /. Here esp=1 is set for each direction and nxb=nyb=nzb is used for each block. The
resulting DDD is applied to the UE in the cubic rigid tank defined above. Figure 4 shows the development in time of the
solver-2 region. The 3D computation starts only when the compression wave approaches the boundaries of the domain
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Figure 4: DDD for the UE interaction with the wall: blocks of the solver-2 domain. The mesh colour represents the tag
of the block, red stands for - and blue for solver 2. Time increases from left to right and from top to bottom.



(see left upper panel). All the boundary blocks have tag -, so the comparison of the 3D solution against the 1D radial
value is carried on there. The difference between the two solutions overcomes the threshold limit when the reflected wave
approaches the boundaries of some of the blocks with tag - (see central bottom panel). Then the solver-2 domain enlarges
as radial asymmetric flow features grow in the computational domain. For this simple problem, the computational time
with the DDD strategy is a fourth of the one with a comparable DD method.

The need for a DDD strategy becomes more stringent in the case of multiple explosions at generic location from the
structure, with different charge and generic relative time lag. Left plot of figure 5 shows as an example two explosions
occurring near a structure. This could be a realistic scenario inside a pipeline, with the view given in the cross-sectional
plane. The individual UEs can be simulated with the radial solver as the other explosion and the structure were not there,
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Figure 5: Scenario with two UEs near a structure: charge positions and relative time of explosion (left), and time instant
of the interaction for the acoustic waves from the UEs (right).

with great saving of CPU time relative to a full 3D solution. Such strategy is suitable until the acoustic waves resulting
from the UEs interact with each other. In the examined scenario, this occurs before the waves reach the structure (see
in the right of the figure) and induces radial asymmetries requiring earlier the enlargment of the 3D sub-domain initially
limited near the pipeline boundary.

The details of the solution method and its application for the physical investigation of multiple UE phenomena will be
discussed at the Workshop.
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