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Transient waves generated by an impulsive perturbation on an infinity vertical circular cylinder are consid-
ered. On the cylindrical surface, the perturbation is written by an expansion composed of Fourier series in
polar direction and Laguerre function in vertical direction. The waves generated by an elementary Fourier-
Laguerre perturbation are then expressed by the memory integration of a double integration of the classical
transient Green function associated with an impulsive source which is expressed by a wavenumber integral.
The double integral on the cylindrical surface and that along the intersection with mean free surface are
performed analytically. Furthermore, the double integrals associated with Fourier-Laguerre base functions
by applying Galerkin collocation to the integral equation are carried out also in an analytic way. Numerical
results are analyzed and compared with those using classical methods based on point collocation on panels.

1 Introduction
This work is an essential step in the development of a new method based on domain decomposition using a
cylindrical control surface at some distance from the body. In the external domain from the control surface,
the transient Green function satisfying the boundary condition on the free surface is used while in the internal
domain limited by the control surface, the body hull and portion of free surface in between, the simple Green
function (1/r) is used. Unlike classical methods, the free-surface Green function is not explicitly evaluated
but its integration on the cylindrical surface associated with a distribution expressed by Fourier-Laguerre
expansion is needed. The integration with the analytical functions on the analytical surface has important
properties of excellent convergence and numerical stability.

2 Potential generated by an impulsive perturbation
In the same procedure of linear time-domain analysis to study the seakeeping characteristics of a floating
body advancing in waves, as summarized in Beck (1994), we consider a control surface C moving at the
same speed U as the body. The surface C is designed to surrounding entirely the body which is located at
the center of the reference system with xoy plane on the mean free surface, oz axis positive upwards and ox
axis pointing forward. If we assume the radius of control surface and the gravity acceleration are both unit,
the speed U is then equivalent to radius-scaled Froude number.

Applying the Green theorem in the external domain limited by the control surface C, the free surface F
and a fictitious surface at infinity S∞, we can write the velocity potential at a point P (x, y, z) by :

Φ(P, t) =

∫ t

0
dτ

∫∫

C+F+S∞

[
Φn(Q, τ)G(P, t, Q, τ) − Φ(Q, τ)Gn(P, t, Q, τ)

]
dS(Q) (1)

=

∫ t

0
dτ

∫∫

C

(
ΦnG − ΦGn

)
dS +

∫ t

0
dτ

∫

W

[
U2(ΦξG − ΦGξ) − U(ΦτG − ΦGτ )

]
dη (2)

according to Liapis (1986). The integral on S∞ on the right side of (1) disappears thanks to the property of
Φ and the integral on F is transformed to the line integral along the intersection W of the control surface at
the free surface in (2) by using Stokes’ theorem and the boundary condition on the free surface. The Green
function G(P, t, Q, τ) in (2) is defined in Wehausen & Laitone (1960) as :

4πG(P, t, Q, τ) = δ(t − τ)G0 + H(t − τ)GF (3)

with G0 = −1/|PQ| + 1/|PQ′| and GF = −2

∫ ∞

0
eκ(z+ζ)J0(κRt)

√
κ sin[

√
κ(t − τ)] dκ (4)

representing the velocity potential at space-time (P, t) = (x, y, z, t) generated by the impulsive source at
(Q, τ) = (ξ, η, ζ, τ). The part G0 is the instantaneous term associated with the Delta function δ(t− τ). The



point Q′(ξ, η,−ζ) is the symmetrical point of Q with respect to z = 0. The part GF is called the memory
term persisting for t > τ as indicated by the Heaviside function H(t − τ). Introducing (3) into (2), we may
write :

4πΦ(P, t) = Φ0(P, t) +

∫ t

0
[ΦF

C(P, t, τ) + ΦF
W (P, t, τ)] dτ (5)

with the instantaneous part

Φ0 =

∫∫

C

(
ΦnG0 − ΦG0

n

)
dS (6)

the memory part associated with surface C and the memory part associated with the intersection W

ΦF
C =

∫∫

C

(
ΦnGF − ΦGF

n

)
dS ; ΦF

W =

∫

W

[
U2(ΦξG

F − ΦGF
ξ ) − 2UΦτG

F
]
dη (7)

The last term in above line integral is a compact form derived from performing the partial integration in τ
of (φGF

τ ) and using the conditions Φ = 0 at τ = 0 and GF = 0 at τ = t. By using the identity :

1/|PQ| =

∫ ∞

0
e−κ|z−ζ|J0(κR) dκ =

∞∑

ℓ=−∞

∫ ∞

0
e−κ|z−ζ|Jℓ(κh)Jℓ(κh′)eiℓ(ϕ−ϕ′) dκ (8)

in which R the horizontal distance between P and Q, and the polar coordinates (h =
√

x2 + y2, ϕ =

tan−1(y/x)) and (h′ =
√
ξ2 + η2, ϕ′ = tan−1(η/ξ)) as shown on Figure 1 are used, we can rewrite (6) for

Φ0 as :

Φ0 =
∞∑

ℓ=−∞

∫ ∞

0
dκ

∫∫

C
[ΦnJℓ(κh′) − ΦκJ ′

ℓ(κh′)][eκ(z+ζ) − e−κ|z−ζ|]Jℓ(κh)eiℓ(ϕ−ϕ′) dS (9)

The horizontal distance Rt (Figure 1) in the memory term GF (4) is defined by :

Rt =
√

[(x − ξ + U(t − τ)]2 + (y − η)2 =
√

(ht)2 + (h′)2 − 2hth′ cos(ϕt − ϕ′) (10)

in which
ht =

√
[x + U(t − τ)]2 + y2 =

√
h2[1 + 2vt cosϕ + (vt)2] with vt = U(t − τ)/h (11)

and the polar angle ϕt in (10) are given by tanϕt = y/[x + U(t − τ)] = sinϕ/(cosϕ + vt).
In the same way as in (8), we use the identity :

J0(κRt) =
∞∑

ℓ=−∞
Jℓ(κht)Jℓ(κh′)eiℓ(ϕt−ϕ′) (12)

in the memory term GF in (4) and we can write the memory parts ΦF
C and ΦF

W as :

ΦF
C = −2

∞∑

ℓ=−∞

∫ ∞

0

√
κ sin[

√
κ(t−τ)]dκ

∫∫

C
[ΦnJℓ(κh′) − ΦκJ ′

ℓ(κh′)]eκ(z+ζ)Jℓ(κht)eiℓ(ϕt−ϕ′) dS (13)

ΦF
W = −2

∞∑

ℓ=−∞

∫ ∞

0

√
κ sin[

√
κ(t−τ)]dκ

∫

W

{
U2ΦξJℓ(κh′) − U2Φ

[
κ cosϕ′J ′

ℓ(κh′) + iℓ sinϕ′Jℓ(κh′)/h′]

− 2UΦτJℓ(κh′)
}

eκzJℓ(κht)eiℓ(ϕt−ϕ′)dη (14)

On the control surface C(h′ = 1,−π ≤ ϕ′ < π), we assume that Φ(Q, τ) and Φn(Q, τ) can be expanded
by Fourier-Laguerre series like :

Φ =
∞∑

m=0

∞∑

n=−∞
φmn(τ)Lm(−ζ)einϕ′

and Φn =
∞∑

m=0

∞∑

n=−∞
ψmn(τ)Lm(−ζ)einϕ′

(15)
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Figure 1: Definition of different geometrical notations

with the Laguerre function L(v) defined by

Lm(v) = e−v/2Lm(v) (16)

with Lm(v) for v ≥ 0 standing for the mth-order Laguerre polynomial defined in Abramowitz & Stegun
(1967).

Introducing (15) into (9), (13) and (14), we may write the potential (5) as :

Φ=
∞∑

m=0

∞∑

n=−∞
ψmn(t)G0

mn−φmn(t)H0
mn+

∫ t

0

{
ψmn(τ)

[
GC

mn+GW
mn

]
−φmn(τ)

[
HC

mn+HW
mn

]
−φ′

mn(τ)H′W
mn

}
dτ

(17)
in which φ′

mn(τ) = dφmn(τ)/dτ and the terms defined as wavenumver integral are given by :

{
G0

mn, H0
mn

}
= −(1/2)

∫ ∞

0
Jn(κh)einϕ

{
Jn(κ),κJ ′

n(κ)
}
[Zm(κ, z) − eκzZ ′

m(κ)] dκ (18)

{
GC

mn, HC
mn

}
= −

∫ ∞

0
eκzJn(κht)einϕt{

Jn(κ),κJ ′
n(κ)

}
Z ′

m(κ)
√
κ sin[

√
κ(t−τ)] dκ (19)

{
GW

mn, HW
mn, H′W

mn

}
= −(1/4)

∫ ∞

0
eκz

{
J G

n (κ, ht,ϕt), J H
n (κ, ht,ϕt), J ′H

n (κ, ht,ϕt)
}√

κ sin[
√
κ(t−τ)] dκ (20)

with

Zm(κ, z) =
2κLm(−z)

κ2 − 1/4
+

m−1∑

α=0

[
(κ + 1/2)α

(κ− 1/2)α+2
− (κ− 1/2)α

(κ + 1/2)α+2

]
Lm−α−1(−z)− (κ + 1/2)meκz

(κ− 1/2)m+1
(21)

Z ′
m(κ) =

(κ− 1/2)m

(κ + 1/2)m+1
(22)

J G
n = U2

{
2Jn(κ)Jn(κht)einϕt

+ Jn+2(κ)Jn+2(κht)ei(n+2)ϕt

+ Jn−2(κ)Jn−2(κht)ei(n−2)ϕt}
(23)

J H
n = U2

{
κ
[
2J ′

n(κ)Jn(κht)einϕt

+ J ′
n+2(κ)Jn+2(κht)ei(n+2)ϕt

+ J ′
n−2(κ)Jn−2(κht)ei(n−2)ϕt]

+ (2n + 2)Jn+2(κ)Jn+2(κht)ei(n+2)ϕt

− (2n − 2)Jn−2(κ)Jn−2(κht)ei(n−2)ϕt}
(24)

J ′H
n = 4U

{
Jn+1(κ)Jn+1(κht)ei(n+1)ϕt

+ Jn−1(κ)Jn−1(κht)ei(n−1)ϕt}
(25)



3 Dirichlet-to-Neumann operator in the external domain
On the control surface C(h′ = 1,−π < ϕ′ ≤ π), both the velocity potential Φ and the normal derivative Φn

are unknown and expressed by Fourier-Laguerre series (15). The integral representation of velocity potential
Φ(P, t) is also true for P ∈ C(h = 1,−π < ϕ ≤ π). Integrating both sides of (15) on C after having multiplied
the base function Lk(−z)e−iℓϕ, we obtain an integral equation :

2πφkℓ(t) =
∞∑

m=0

∞∑

n=−∞
ψmn(t)G0

kℓ,mn − φmn(t)H0
kℓ,mn

+

∫ t

0

{
ψmn(τ)[GC

kℓ,mn + GW
kℓ,mn] − φmn(τ)[HC

kℓ,mn + HW
kℓ,mn] − φ′

mn(τ)H′W
kℓ,mn

}
dτ (26)

with the notations :{
G0

kℓ,mn, H0
kℓ,mn, GC

kℓ,mn, HC
kℓ,mn, GW

kℓ,mn, HW
kℓ,mn, H′W

kℓ,mn

}

=

∫ 0

−∞
Lk(−z) dz

∫ π

−π
e−iℓϕdϕ

{
G0

mn, H0
mn, GC

mn, HC
mn, GW

mn, HW
mn, H′W

mn

}
(27)

All integrals on the right side of (27) are performed analytically in Chen (2015) and reduced to single integrals
in wavenumber.

4 Discussions
Some terms of GC

mn(z, h, τ) defined by (19) are depicted on the left of Figure 2 for (z = −0.01, τ = 20) and h
varying from 1 to 20, and on the right of Figure 2 for (z = −0.01, h = 2) and τ varying from 0 to 40. Values
at different order (m = 0 − 3, n = 0) are shown by colored curves and that of the point Green function GF

is also depicted by the dotted black curve. It is expected that GF is highly oscillatory with large amplitude
and GC

mn is smooth and tends to zero at large time. It is thus expected that the present work offers a critical
element to develop the new multi-domain method.
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Figure 2: Waves due to an impulsive perturbation at τ = 20 (left) and at h = 2 (right)
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