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1 Introduction

Accurate and efficient computation of diffraction loads is a classical topic in Engineering design of offshore
structures. In the linear case diffraction generally reduces the wave forces. Nonlinear diffraction, however,
can be significant for slender structures, where higher-harmonic forcing can lead to ringing.

Figure 1(left) shows an example of such a flow from experiments at DHI within the Wave Loads project
(Bredmose et al., 2013). The incident wave travels towards left. Small diffracted waves are seen at the free
surface around the cylinder. The flow is gentle enough to allow a potential flow approach, but in this and
steeper cases, linear methods may be questionable for a detailed flow and force description. In the present
paper we pursue a force model that includes diffraction and (almost) full nonlinearity by application of the
higher-order spectral method in a small domain around the cylinder. Inspired by the work of Ducrozet et al.
(2014), we pursue a decoupled treatment of the incident and diffracted wave fields. This enables accurate
pre-computation of the incident wave transformation. Paulsen et al. (2014) demonstrated that the size of the
interaction domain between the incident and diffracted wave field can be very small.

Figure 1: Left: Wave incident at a vertical cylinder. Right definition sketch for the diffraction problem with a large domain for
incident wave computation and a smaller flat-bed domain for the diffraction computation.

2 Governing equations and choice of spectral basis

We consider the domain sketched in figure 1(right) where a Cartesian coordinate system is placed with the
z-axis pointing upwards from the still water level and the x-axis pointing in the direction of the waves.
The theory is general enough to allow incident waves from any or many simultaneous directions. While
the incident wave field may exist at varying depth, we approximate the diffracted wave field by its constant
depth solution. The free surface elevation η and the velocity potential at the free surface φ̃ satisfies the



kinematic and dynamic free surface conditions
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where g is the acceleration of gravity and ε is a small ordering parameter. The velocity potential satisfies the
Laplace equation in the fluid domain and impermeability conditions on the sea bed and cylinder wall. We
further decompose the wave field into an incident and diffracted part(
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where ’D1’ denotes the linear diffraction solution and ’D2’ the nonlinear diffraction solution. The sum of
these diffracted fields must satisfy the Somerfeld radiation condition.

Following Bonnefoy et al. (2006)(IWWWFB), we apply the higher-order spectral method in a cylindrical
domain. Our aim, however is the calculation of the ’D2’ field only, since the ’I’ field is known and the ’D1’
field can be constructed directly from it. We thus expand η and φ in cylindrical coordinates (r, θ, z) as
follows
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Here Fpn(kpnz) = cosh(kpnh(z + h))/ cosh(kpnh), H1
p (knr) is the Hankel function of the first kind and

the primes denote differentiation with respect to r. This expansion satisfies (??)–(??). Further, the incident
wave field and its linear diffraction solution (η, φ)I + (η, φ)D1 are represented by Apn, Cpn, while the
remaining nonlinear fields (η, φ)D2 are represented by Bpn, Dpn.

3 Splitting, boundary conditions and the higher-order spectral method

Due to the nonlinearity in the free surface conditions, the solution for the D2 field cannot be computed
separately. We adopt the approach of Ducrozet et al. (2014), extended to inclusion of the lateral boundary
conditions through application of a linear operator.

We introduce the notation v = (η, φ) and write (1)–(2) as vt = RHS(v). Next we observe that
expansion of the incident wave field in the Jp basis of (4)–(5) yields the (Apn, Bpn) coefficients at any time.
Addition of the Hpn terms and back-transformation to the physical space establishes the linear diffraction
solution. This full operation can be represented by a linear operator, such that vI+D1 = LBCvI . This
relation also applies to the time derivative of v. Hereby (1)–(2) become

vD2,t = RHS (vD2 + LBCvI)− LBCvI,t. (6)

In this approach, the D2 solution can thus be time stepped with application of the known incident wave field
as driving source term. The key here is that the nonlinear interaction terms are calculated with the full wave
field and therefore leaves no need for explicit splitting into separate products of the incident and diffracted
fields.



While the linear solution of (1)–(2) is explicitly given as LBCvI , solution of the full equations requires
evaluation of the vertical velocity w̃ = φ̃z at the free surface. The straight-forward calculation of φz at z = 0
through (5), however, can be utilized to achieve an almost fully nonlinear evaluation of φ̃z . The approach
was pioneered by West et al. (1987); Dommermuth & Yue (1987) among others. From a formal Stokes
expansion of the velocity potential, εφ =

∑M
m=1 ε

mφ(m), and subsequent Taylor expansion from z = 0, the
surface potential can be written
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where φ0 = φ|z=0. Thus by repeated solution of (7) through increased orders of ε, φ(1...M)
0 can be computed

to yield φ̃z at any desired order of accuracy. Hereby (6) can be solved with almost full nonlinearity to yield
the nonlinear part of the diffraction solution.

4 First results and next steps

Results from the model and its development is shown in figure 2. The top row shows spatial snapshots of
linear diffraction obtained with the solver for h = 25 m, r0 = 3 m, kinci = 5.3 · 10−2 m−1 and H = 1 m.
The total free surface elevation field is shown in the left panel, while the diffracted ’D1’ field is shown in the
right panel. This is compared at θ = 0 to the MacCamy-Fuchs solution in the middle right panel. We see
that the spectrally constructed linear diffraction field matches the analytical solution well except for some
high-frequency oscillations that appear to emerge from the outer boundary. The middle left panel shows a
comparison of φI,z from the spectral solver and the analytical solution for the total wave field of incident
and diffracted waves. An overall good match is seen, although with some visible overlaid oscillations. To
overcome these oscillations and any effect from them on the cylinder force, a spectral absorption scheme
has been developed (bottom left). This is compared to absorption by simple damping for a case of an
axisymmetric wave group interacting with the cylinder (bottom right). The absorption scheme is seen to
succesfully absorb the outward propagating waves with no reflection in the in-ward direction from the outer
boundary. Elimination of the high-frequency oscillations with the spectral absorption scheme is part of
present work. Further, the nonlinear solver for the ’D2’ field has been implemented and is subject to ongoing
tests. Results of this and comparison to known nonlinear solutions will be presented at the workshop.

The work was partly carried out in the DIMSELO project, which is a Knowledge-building Project for
Industry funded by the Norwegian Research Council (NRC) under the ENERGIX program. The project is
also funded by its industry partners Statoil and Statkraft. The projects research partners are IFE, NTNU and
DTU.
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Figure 2: Top row: Comparison to MacCamy-Fuchs theory for free surface elevation of total wave field (left) and linear diffraction
field (right). Middle row: Comparison at θ = 0 of ∂φ/∂z for the total wave field (left) and the linear diffracted field free surface
elevation (right). Bottom row: Test of spectral absorption technique (left) and standard damping of the total wave field (right).
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