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Highlights

• The study deals with oblique wave interaction with multiple bottom-standing flexible porous
barriers near a rigid wall in the presence of slopping step.

• The physical problem is solved using the least squares approximation method along with the
multi-mode approximation method associated with the modified mild-slope equation.

• Effects of slopping step, number of barriers, structural rigidity, compressive force, angle of inci-
dence, barrier length, porosity and height of the step are examined.

• The study reveals that for various combinations of bed profile, wave and structural parameters,
nearly zero and full reflection occurs.

• The present study is likely to be helpful for ocean engineers to design of perforated breakwater
to create clam region near sea wall, port and harbor wall.

1. Introduction

Recently, perforated breakwaters have been introduced into the art of reducing wave reflection and
wave run-up in front of the structures to protect ports and operation areas for ship loading and
unloading. Jarnal (1961) was initially proposed a perforated wall breakwater consisting of a front
porous wall, a rigid back wall and a wave absorbing chamber between them. Since then, Jarlan type
breakwater has been received considerable attentions due to its significant effect on the reduction of
the wave reflection and wave force. A through review of the developments on wave interaction with
various perforated breakwater can be found in Huang et al. (2011) and the literature cited therein.
Due to light in weight, economical, reusable and environmental friendly, vertical fully/partial flexible
porous barriers are preferred in many situations as a perforated breakwater. Behera et al. (2013)
investigated the problem of wave trapping by a flexible porous barrier near a rigid wall. Although
wave interaction with single/multiple fully/partial porous barriers in uniform bottom bed has been
well studied in the literature, wave interaction with perforated breakwater consists of single/multiple
fully/partial flexible porous barriers in the presence of step type bottom bed has not received attention
to the best of the knowledge of the authors. Therefore, in the present study, wave interaction with
multiple bottom-standing flexible barriers near a rigid wall is studied in the presence of slopping step.

2. Mathematical formulation

Oblique wave interaction with multiple bottom-standing flexible porous barriers is studied in the
presence of slopping step under the assumptions of linearized water wave theory and small amplitude
structural response. The problem is considered in the three-dimensional Cartesian co-ordinate system
with xy being the horizontal plane and the z-axis being vertically upward. It is considered that the
slopping step occupies the region 0 < x < L with variable depth h(x), and the uniform open water
regions −∞ < x < 0 and L < x < ∞ with water depth h1 and h2 respectively. It is assumed that
N number of bottom-standing barriers are placed at x = αj , where αj = L + L1 + (j − 3)L2 for
j = 3, 4, ..., (N +2). First barrier is located at a distance L1 from end edge of the slopping step, L2 is
the spacing between each barrier and D is the distance between last barrier and rigid wall as shown
in Figure 1. Assuming that the fluid is inviscid, incompressible, and the motion is irrotational and
simple harmonic in time with angular frequency ω. The fluid is assumed to be extended horizontally
along the y−axis over y < ∞. Obliquely incident wave over slopping bed is a quasi-3D problem. If
the the bottom changes only in the x-direction, the wave component does not change its wave number
in the y-direction. Thus, the form of the velocity potential for j = 1, 2, 3, ..., (N + 3) is given by



Φj(x, y, z, t) = Re{ϕj(x, z)e−i(kyy+ωt)}, where θ is the incidence angle with x-axis and ky = k10 sin θ
with k10 being the wave number of the incident wave in region 1. Along the vertical z−direction,
Hb = (−h2,−h2 + b) and Hg = (−h2 + b, 0) are denoted as the barrier and gap regions respectively
with b is the length of the barriers. The spatial velocity potential ϕj(x, z) for j = 1, 2, 3, ..., (N + 3)
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Figure 1: Wave interaction with multiple flexible porous barriers near a rigid wall.

satisfies the Helmholtz equation given by(
∇2

xz − k2y

)
ϕj = 0, (1)

where ∇2
xz = (∂2/∂x2 + ∂2/∂z2). The linearized free surface boundary condition is given by

∂ϕj/∂z −Kϕj = 0 on z = 0, for j = 1, 2, 3, ..., (N + 3), (2)

where K = ω2/g and g is the acceleration due to gravity. Further, the uniform rigid bottom boundary
condition is given by

∂ϕj/∂z = 0 on z = −hi, (3)

where i = 1 for j = 1 whilst, i = 2 for j = 3, 4, ..., (N + 3). On the other hand, bottom boundary
condition for slopping step region 2 on z = −h(x) is given by

∂ϕ2/∂z + (dh/dx)(∂ϕ2/∂x) = 0. (4)

The continuity of pressure and normal velocity along the gap at x = αj is given by

ϕj = ϕj+1, ∂ϕj/∂x = ∂ϕj+1/∂x, z ∈ Hg, (5)

where j = 3, 4, ..., (N + 2). The flexible barriers are assumed to be oscillating in the horizontal
direction with displacement of the form ζ(j−2)(y, z, t) = Re{ξ(j−2)(z)e

−i(kyy−ωt)}, where ξ(j−2)(z) for
j = 3, 4, ..., (N +2) are the complex deflection amplitudes of the flexible barriers. Thus, the boundary
condition on the flexible porous barriers at x = αj for j = 3, 4, ..., (N + 2) is given by

∂ϕj/∂x = ik10G(ϕj − ϕj+1)− iωξ(j−2), z ∈ Hb, (6)

where G being the complex porous-effect parameter as in Yip et al. (2002). The equation of motion
of the barrier at x = αj , j = 3, 4, ..., (N + 2) acted upon by fluid pressure yields

EI(D2 − k2y)
2ξ(j−2) +Q(D2 − k2y)ξ(j−2) −msω

2ξ(j−2) = iρω(ϕj − ϕj+1), z ∈ Hb, (7)

where EI = E3ds/12(1 − ν2) is the rigidity of the barriers, E is the Young’s modulus, ds is the
thickness of the barrier, ν is the Poisson’s ratio, Q is the uniform compressive force acting on the
barrier, ms = ρsds is the uniform mass per unit length with ρs being barrier density and ρs is the
density of water. To keep the barrier in position and for the unique solution of the BVP, the barriers are



assumed to be clamped near sea bed at (αj ,−h2) and moored near the submerged end at (αj ,−h2+b)
for j = 3, 4, .., (N + 2). Thus, clamped-moored edge conditions are given by

ξ(j−2)(u) = 0, ξ′(j−2)(u) = 0, (8)

(D2 − νk2y)ξ(j−2)(u) = 0, [EI{D2 − (2− ν)k2y}D +QD]ξ(j−2)(u) = 2Km sin2 σmξ(j−2)(u), (9)

where Km = mooring line stiffness and σm = the mooring line angle in the static position, u being
−h2 + b,−h2 as appropriate.

3. Method of Solution

Using the expansion formulae, the form of the special velocity potentials ϕj(x, z) for j = 1, 2, 3, ..., (N+
3) in each regions are expressed as

ϕj =



A10e
ip10xf10(k10, z) +

∞∑
n=0

B1ne
−ip1nxf1n(k1n, z), x < (α1 = 0), j = 1,

∞∑
n=0

ψn(x) Wn(h(x), z), α1 < x < (α2 = L), j = 2,

∞∑
n=0

(Ajne
ip2nx +Bjne

−ip2nx)f2n(k2n, z), α(j−1) < x < αj , j = 3, 4, ..., (N + 2),

∞∑
n=0

Bjn cos p2n(x−M3)f2n(k2n, z), α(N+2) < x < α(N+3), j = N + 3,

(10)

where fin(kin, z) = cosh kin(z + hi)/cosh kinhi and pin =
√
k2in − k2y for i = 1, 2 with k10 and k20 are

the positive real roots and kin for n = 1, 2, 3, · · · are the purely imaginary roots of the dispersion
equation ω2 = gkin tanh kinhi in kin for i = 1, 2. Further, in the sloping step region, ψn(x)s are
unknown functions and Wn = cosh k̃n(z + h)/cosh k̃nh with the wave number k̃0 is a positive real
root and k̃1, k̃2, k̃3, · · · , are purely imaginary roots of the dispersion equation ω2 = gk̃ tanh k̃h in k̃. It
may be noted that the roots k̃0, k̃1, k̃2, k̃3... are functions of bottom profile h(x). Ajn and Bjn are the
unknown constants to be determined. Using the procedure for extended modified mild-slope equation
(MMSE) as in Porter and Staziker (1995) to obtain ψn(x) in undulated region, it is derived that

d

dx

(
an
dψn

dx

)
+

N∑
m=0

[(
bmn − bnm

)
dh

dx

dψm

dx
+

{
bmn

d2h

dx2
+ cmn

(
dh

dx

)2

+ dmn − k2yan

}
ψm

]
= 0, (11)

where the form of an(h), bmn(h) cmn(h) and dmn(h) for n = 0, 1, 2, · · · ,N being same as given in
Porter and Staziker (1995). Using the velocity potential as in Eq. (10) and continuity of pressure
across the interfaces x = 0 and x = L in the jump conditions as in Porter and Staziker (1995) yield

a0
dψ0

dx
+ ip10a0ψ0 + h′

N∑
m=0

bm0ψm − 2ip10a0A10 = 0,

an
dψn

dx
+ ip1nanψn + h′

N∑
m=0

bmnψm = 0,

 at x = 0+, n = 1, 2, · · · ,N, (12)

an
dψn

dx
− ip2nanψn + h′

N∑
m=0

bmnψm − 2ianp2nB3ne
−ip2nx = 0 at x = L−, n = 0, 1, 2, · · · ,N. (13)

Using Eqs. (5) and (10) in Eq. (7) the plate deflections ξ(j−2) for j = 3, 4, ..., (N + 2) are obtained as

ξ(j−2)(z) =

4∑
m=1

C̃jmf̃m(z) +

∞∑
n=0

(UjnÃjn + VjnB̃jn)f2n(k2n, z), z ∈ Hb, (14)



where Ãjn, B̃jn, Ujn, Vjm, en and sn are the known constants obtained after using Eqs. (5) and
(10) in Eq. (7). Using the form of f̃m(z) and suitable application of the least square approximation
method as given in Behera et al. (2013), yields a system of equations. Further, to find ψn, modified
mild-slope Eq. (11) is solved numerically by using Runge-Kutta method. Finally, using the required
edge conditions as in Eq. (8) along with the computed all system of equations are solved.

4. Numerical Results and Discussion

In the present study, time period T = 8 sec, acceleration due to gravity g = 9.81 m/sec2, depth ratio
h2/h1 = 0.6, L/h1 = 0.25, L1/λ1 = 0.5, L2/λ1 = 0.5, D/λ1 = 0.25, λ1 = 2π/k10, γ = EI/(ρgh42) =
0.1, τ = Q/(ρgh22) = 0.1, υ = ms/(ρh2) = 0.1, ν = 0.3, a/h2 = b/h2 = 0.5, σm = 45◦, Km = 103 N
m−1, number of barrier N = 8 and θ = 30◦ are kept fixed unless it is mentioned. The reflection
coefficient is denoted by Kr = |B10/A10| and the slopping step bed profile is considered using the bed
function h(x) = h1 − b̃x/L with b̃ = h1 − h2.
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Figure 2: Variation of (a) Kr versus D/λ1 for different values of G with h2/h1 = 1 and θ = 0◦ (b) Kr

versus D/λ1 for different values of h2/h1 with G = 1 + 0.5i and θ = 0◦ (c) Kw versus θ for different
values of N with h2/h1 = 0.6.

From Figures 2(a) and (b), it is found that full and nearly zero reflection occur periodically as D/λ1
increases for h2/h1 = 1. The nearly zero reflection is referred as nearly full wave trapping in the
confined region as in Yip et al. (2002). Figure 2(a) depicts that the wave reflection increases with an
increase in the absolute value of the porous-effect parameter G. This is due to the transmission of
more wave energy by the flexible porous barrier with an increase in the absolute value of G. Figure
2(b) shows that the amplitude of the oscillatory patterns of the reflection coefficient decreases with
increase in h2/h1. Further, from Figure 2(c), it is observed that non-dimensional horizontal force Kw

on the rigid wall decreases with an increase in number of barriers N which is due to the dissipation
of more wave energy. Various other results will be presented in the workshop.
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