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Highlights: 

 A numerical method is developed for predicting ship maneuvering in waves, based on the two-time scale model. 

 The linear hydrodynamic forces on the maneuvering hull are evaluated based on the double body model with a 

trailing vortex sheet, and the effects of the trailing vortices on the wave forces are considered indirectly. 

 The present method is validated by comparing the numerical results with the free running model test data. 

 

1 Introduction 

Prediction of ship maneuverability is typically carried out in 

clam water conditions. This gives valuable information at 

the ship design stage. However, an actual seagoing ship 

usually maneuvers in the presence of waves. From the 

viewpoint of ship safety, it is meaningful to understand the 

maneuvering behavior of a ship in waves. 

To study the maneuverability of a ship in waves, combining 

the theories of maneuvering and seakeeping is needed. A 

practical combining approach is to use the two-time scale 

model, which separates the basic motion equations into two 

groups: the one for high frequency wave-induced motion 

and the other for the low frequency maneuvering motion. 

Typical works in this area have been reported by Skejic 

and Faltinsen [1], Yasukawa and Nakayama [2] and Seo and 

Kim [3]. 

In the present study, numerical simulations of the ship 

maneuvering in waves are carried out. The maneuvering 

motion is calculated using 4-DOF MMG model, whereas the 

wave-induced motions are determined by solving a 

linearized boundary value problem (BVP) in time domain. 

The maneuvering and seakeeping problem is integrated by a 

two-time scale model, following the approach of Seo and 

Kim [3]. Numerical results for the S-175 container ship 

turning in waves are presented and compared with 

experimental data to validate the numerical method. 

2 Mathematical formulations 
2.1 Coordinate systems 

Two coordinate systems are adopted, as shown in Fig. 1. The 

first one ( , , )x x y z  is body-fixed, with the positive x 

towards the bow and the positive z pointing upward. The xy 

plane is coincident with the calm water level and the origin 

of the frame is at the midship; the second one ( , , )X X Y Z


 

is fixed in space. 

 
Fig. 1 Coordinate systems 

2.2 Basic motion equations 

The ship is assumed rigid and undergoing six degrees of 

freedom oscillations while translating with forward speed u, 

transverse speed v and rotating with yaw rate r in regular 

waves. Based on the two-time scale model, ship motion is 

assumed to be the sum of the high frequency wave-induced 

motion and the low frequency maneuvering motion. 

The 6-DOF motion equations for high frequency problem 

are expressed as: 

     [ ] ( ) [ ] ( )   ( , 1,2 6)ij j ij j iM t C t F i j        (1) 

where 1 2 3( , , )T   


 and 4 5 6( , , )R   


represent the 

ship’s translational and rotational displacements, 

respectively; [ ]ijM is the inertial matrix for the hull, [ ]ijC is 

the matrix of hydrostatic restoring coefficients and 

  ( , , , , , )i x y z x y zF F F F M M M  denotes the hydrodynamic 

force and moment for high frequency component. The ship 

displacement about the body-fixed frame is written as: 

( , , )x y z T R x        
                     (2) 

The equations of low frequency ship maneuvering motion 
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where m is ship’s mass, Ixx and Izz are moments of inertia. xG 

and zG represent the coordinates of the center of gravity, the 

subscripts H, P, and R denote the hydrodynamic forces of 

low frequency motion on the hull, propeller and rudder, 

respectively; the subscript W denotes the wave drift forces. 

The hull force ( , , , )H H H H HF X Y K N


 can be decomposed as 
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where mx and my are the added masses, and Jzz and Jxx are the 

added moments of inertia in zero frequency. 

In the present study, the linear force ( , , ,v r v rY v Y r N v N r ), the 

high frequency force  iF , and the wave drift forces are 

calculated by solving the BVPs. The rudder, propeller and 

nonlinear hull force components are obtained from the 

model test [4]. 

2.3 Modeling of hydrodynamic forces 

In order to calculate the hydrodynamic forces in time 

domain, temporal discretizations must be introduced. Since 

the frequencies of maneuvering motion and wave-induced 

motion are very different, two different time scales, denoted 

by L  and H , are used in the low frequency problem and 

the high frequency problem, respectively. The ratio between 

L  and H  is donated by N, which is generally much larger 

than 1. 

During the interval of each maneuvering time step L , the 

ship speed is assumed to be constant, and is defined as  

( ) ( ) 0W u ry i v rx j k    
  

            (5) 

where ( , , )i j k
 

 are the unit vectors associated with the 

ship-fixed coordinates. 

Under the assumption that the fluid is inviscid and 

incompressible, and the flow is irrotational, the fluid 

velocity potential can be introduced. The total disturbance 

potential ( , )x t   satisfies the following BVP: 

 

2

  

0     

( ( ) )[ ( , , )] 0      z= ( , , )

1
 z= ( , , )

2

( , )
   

in fluid domain

on

on

on body surface

W z x y t x y t
t

W g x y t
t

x t
W n n

n t

 

 



  
      
 

         
        





   

 (6) 

where n
 is the inward unit normal on the hull surface. 

In addition, for the ship in oblique or turning motion, which 

can be regarded as a lifting body, a Kutta condition should 

be imposed at the trailing edge of the hull. 

To linearize the free surface boundary conditions, the total 

disturbance potential   is decomposed  into a basis flow 

( )x   and a perturbation flow ( , )P x t  : 

( , ) ( ) ( , )Px t x x t                 (7) 

The basis flow is assumed to be the main component with its 

order of (1)O  and is related to the double body flow, which 

includes the one induced by maneuvering motion. To 

account for the lifting effect associated with the 

maneuvering motion, trailing vortex sheets are introduced 

which are assumed shed from the hull at both the keel line 

and the trailing edge of the hull, as shown in Fig. 2. By 

referring the work of Matsui et al. [5], a linear trailing vortex 

sheet is adopted. In the numerical approach, the length of the 

vortex sheets are assumed to be six times of the ship length 

and the angle    between the x-axis and the free vortex line 

is determined by the following formula: 

 0.5arctan( / )v u               (8) 

 
Fig. 2 The vortex model 

The perturbation potential ( , )P x t  and the wave elevation 

  are assumed to be order of ( )O  . They are decomposed 

as: 
( , ) ( , ) ( , )P Ix t x t x t                  (9) 

( , , ) ( , , ) ( , , )Ix y t x y t x y t             (10) 

where ( , )I x t   represents the incident wave potential, 

( , , )I x y t  is the incident wave elevation. ( , )x t  and

( , , )x y t  denote the remaining parts of the disturbance 

potential and wave elevation, respectively. 

The linearized BVP for ( , )x t   is written as follows: 
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where 1 2 3( , , )n n n n  , 4 5 6( , , )n n n x n    and jm  is the 

so-called m-terms, which are evaluated as 

1 2 3

4 5 6

( , , ) ( )( )  , 

( , , ) ( )( ( ))

m m m n W

m m m n x W
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
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(12) 

Theoretically, an interaction exists between the trailing 



vortices and the disturbance potential ( , )x t  . In the present 

study, however, the influence of the wave potential on the 

trailing vortices is neglected, because of the difficulty to 

determine the strength of the vortex in the presence of free 

surface and incident waves. The error introduced by this 

treatment is supposed to be small, since ( , )x t   is smaller 

than ( )x 
 by an order of magnitude. On the other hand, the 

effects of the trailing vortices on the wave potential ( , )x t   

are considered through the m-terms as well as the 

leading-order terms kept in the free surface boundary 

conditions. 

Using Bernoulli’s equation, the hydrodynamic pressure is 

obtained 
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where (0)p  and (1)p  denote the pressures from the base 

flow and the perturbation flow, respectively. 

The linear forces for low frequency motion satisfy the 

following equations: 
(0)

2  
B

v r S
Y v Y r p n ds               (15) 

(0)
6   

B
v r S

N v N r p n ds              (16) 

The generalized hydrodynamic force for high frequency 

motion can be determined by: 
(1) ,    1,2, ,6

B
j jS

F p n ds j           (17) 

The second-order hydrodynamic force (2)F


 is evaluated by 

the following equation: 
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where 1n
  and 2n

  mean the linear and second-order 

components of normal vector on the body surface, 

respectively. Details about Eq. (18) can be found in 

Joncquez [6]. The mean values of the x and y component of 
(2)F


 equal to the wave drift forces WX  and WY , 

respectively. The wave drift moments WK  and WN  are 

neglected in the present study, because their magnitudes are 

generally small. 

In this study, the linearized BVP (11) is solved by a time 

domain Rankine panel method, following the approach of 

Kring [7]; whereas the maneuvering motion equations (3) is 

solved by a 4th-order Runge-Kutta scheme. Referring to the 

study by Seo and Kim [3], a parallel time marching scheme 

is used (See Fig. 3). The linearized BVP (11) is firstly 

solved for N time steps to obtain the wave-induced ship 

motion as well as the linear forces (Eqs. (15) and (16)) and 

the wave drift forces. Then the maneuvering motions are 

simulated for one time step and the resulted ship speed and 

position are substituted back to update the BVP for the next 

time step. This cycle is continued until the end of 

time-marching procedure. 

 
Fig. 3 Time marching scheme 

3 Numerical results and discussion 

Numerical simulations of the turning tests of the S-175 

container ship are carried out, and the numerical results are 

compared with the data of model tests carried out at the 

Ocean Engineering Model Basin of Shanghai Jiao Tong 

University. 

Fig. 4 illustrates the comparisons of the turning trajectory in 

clam water and in waves. It can be seen that the turning 

trajectories move both along and normal to the wave 

progress direction. The numerical results can generally give 

the drift tendency of the turning trajectories, but the 

predicted turning circles are smaller than those of the 

experiment. The reason for this difference may be due to the 

inaccurate evaluation of the mean drift forces. 

 

 
Fig. 4 Comparison of turning trajectories of S-175 model, rudder 

angle 35   (port side), wave height 0.01A L . 



Fig. 5 illustrates the comparisons of roll and pitch motion 

when the wave direction 180   . Fig. 6 shows that of 

90   . As seen in the figures, the predictions for roll and 

pitch motion roughly capture the increasing and decreasing 

of wave-induced motion amplitude associated with turning 

motion. But a time lag could be found between the predicted 

motions and the experimental measurements, especially for 

60t s . The reasons for this difference may be as follows: 

The turning period of the S-175 model is about 60s. For 

60t s , the discrepancies between the numerical prediction 

of the low frequency motion and the experiment become 

more remarkable. The poor predictions of the ship turning 

trajectory result in an error in the encounter frequency of the 

waves and therefore decrease the prediction accuracy of the 

wave-induced motions. 

4 Concluding remarks 

A numerical study on ship maneuvering in waves is carried 

out, based on the two-time scale model. In order to validate 

the present numerical method, the turning tests of S-175 

model in the presence of waves are simulated. The 

numerical results are compared with the model test data, 

which shows that the present method can roughly capture 

the maneuvering performance of the ship in waves. A further 

study to improve the present method is still in process. 

 
(a) Roll comparison 

 
(b) Pitch comparison 

Fig. 5 Time histories for S-175 model 
( 1.0,  0.01 ,  180L A L     ) 

 
(a) Roll comparison 

 
(b) Pitch comparison 

Fig. 6 Time histories for S-175 model 
( 1.0,  0.01 ,  90L A L     ) 
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