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Highlights

• A finite difference approach and a spectral approach of resolving the velocity potential in the
vertical are compared in a fully nonlinear potential flow model. The spectral approach shows
improved accuracy and efficiency for two test cases.

• The resultant model simulates well the propagation and nonlinear interactions of irregular waves
over a submerged bar in comparison to experimental data.

Introduction
To model waves in the nearshore region, it is necessary to have accurate, rapid models that can
simulate the nonlinear and dispersive effects over large spatial domains. Models ranging from the
mild slope equation to CFD (Computational Fluid Dynamics) approaches based on the Navier-
Stokes equations are used for a variety of different applications, with varying degrees of accuracy
and computational cost. Potential flow theory models, based on the assumption of irrotational flow,
may be an ideal compromise between simplified linear wave models and CFD approaches modeling
the fine scale processes.

Potential flow wave models require the resolution of the Laplace equation in the fluid domain with
specification of the boundary conditions. Boundary integral methods are commonly used to develop
highly accurate fully nonlinear models (e.g. [6]), but recent work also uses a finite difference approach
(e.g. [7, 3, 5]). The relative simplicity of this approach, in comparison to more mathematically
complex projection methods, may be ideal when studying nonlinear wave-body interactions [3].

Here, a fully nonlinear potential flow theory model resolving the Zakharov equations [12] is
developed. The Zakharov equations express the temporal evolution of the free surface elevation η
and velocity potential φ̃, which require calculating the free surface vertical velocity w̃. The accuracy
and efficiency of two methods of calculating w̃ as a function of (η, φ̃) (“Dirichlet-to-Neumann” or
DtN problem) is compared as a function of the horizontal and vertical resolution for two test cases.
The optimal spectral approach is then validated with a comparison to experimental data.

Overview of the mathematical and numerical models
By assuming irrotational flow, the velocity potential φ(x

¯
, z, t) satisfies the Laplace equation in the

three dimensional (x
¯
, z) fluid domain:

∇2φ+ φzz = 0, −h(x
¯
) ≤ z ≤ η(x

¯
, t), (1)

with free surface elevation z = η(x
¯
, t) and a bottom boundary z = −h(x

¯
). By assuming continuity

of the fluid from the bottom to the free surface (i.e. non-overturning free surface), setting the
free surface atmospheric pressure equal to 0, and defining the free surface velocity potential as
φ̃(x

¯
, t) ≡ φ(x

¯
, η(x

¯
, t), t), the kinematic and dynamic surface nonlinear boundary conditions are derived

as a function of φ̃, following Zakharov [12]:

ηt = −∇η · ∇φ̃+ w̃(1 + (∇η)2), (2)

φ̃t = −gη − 1
2

(
∇φ̃

)2
+ 1

2
w̃2(1 + (∇η)2), (3)



where w̃(x
¯
, t) is the vertical velocity at the free surface defined by:

w̃(x
¯
, t) = φz(x

¯
, η(x

¯
, t), t). (4)

By specifying the lateral boundary conditions and solving the DtN problem to calculate the free
surface velocity w̃(x

¯
, t) from (η(x

¯
, t), φ̃(x

¯
, t)), (2) and (3) model the temporal evolution of the free

surface quantities η and φ̃.
Equations (2) and (3) are integrated in time using the classical explicit four-step, fourth-order

Runge-Kutta scheme. Fourth-order finite difference schemes with regular or irregular point distribu-
tion are used to calculate horizontal gradients and Laplacian operators. Two methods of resolving
the DtN problem are compared in one horizontal dimension, x, which is discretized by NX points.

• Model A. Following [3], [5], and [4], the domain is discretized with NZ points in the vertical
(N = NZ − 1 fluid layers), and fourth-order finite difference schemes are used to resolve the
vertical spatial derivatives.

• Model B. The second method, based on the spectral approach of [9], expresses the vertical
profile of φ as a linear combination of Chebyshev orthogonal polynomials of the first kind (NT

is the maximum order of the polynomial). (See [11] for more details).

For both methods, a system of NX(N + 1) linear equations must be solved at each time step,
where N = NL, the number of layers in the vertical for Model A, and N = NT , the maximum order
Chebyshev polynomial for Model B. The direct solver MUMPS (“MUltifrontal Massively Parallel
Solver”, v4.10.0) [1] is applied in the Fortran code using the default settings.

Test Cases: comparison of accuracy and efficiency
Propagation of a regular nonlinear wave

The first test case compares the resolution of the DtN problem and errors in propagating a regular,
nonlinear wave of permanent form in a uniform depth periodic domain. The initial conditions are
calculated using a highly accurate Fourier series approximation (20th order) of the stream function
method [8] for a wave with wavelength L = 64 m and wave height H = 6.4 m in a water depth
h = 64 m (domain length L). The wave steepness is H/L = 0.1 (or ka = kH/2 = π/10), and the
relative water depth is h/L = 1 (or kh = 2π).

The normalized error of the free surface vertical velocity decreases with an increase in the vertical
resolution N , and both models converge to the same minimum for large values of N (Figure 1). Model
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Figure 1: Convergence of the free surface vertical velocity w̃ for a regular nonlinear wave with wave steepness
H/L = 0.1 (ka = π/10) and relative water depth h/L = 1 (kh = 2π) for (A) Model A and (b) Model B.



A converges algebraically with errors decreasing as N−k, with k ≈ 3.8, while Model B converges
geometrically, with errors decreasing as exp(−qN), with q ≈ 1.26. Propagation errors in maximum
free surface elevation and phase lag after 25 periods of wave propagation show a strong dependence
on the horizontal and vertical resolution. Errors are similar in both model approaches, with expected
increases in errors with decreases in resolution, and the optimal value of vertical resolution N for both
models appears to be in the range 7 < N < 15. Comparisons of the computational time required
to obtain certain thresholds in total energy errors also shows improved efficiency using the Model B
approach.

Motion of a nonlinear standing wave
The second test case compares the motion of a nonlinear standing wave in a domain with fully
reflective lateral boundaries. After an integer number of wave periods, the wave characteristics
should remain identical to those of the initial condition, calculated using the highly accurate (14th
order) Fourier method of [10]. A wave with wavelength L = 192 m, relative water depth kh = 3,
and wave steepness ka = 0.42 is calculated (with a corresponding water depth and wave height of
h ≈ 91.6732 m and H ≈ 25.6685 m, respectively). The simulation is initiated with the displacement
of the free surface η in a domain of length L, with no initial fluid velocity.

After 100 periods of wave motion, errors in the maximum free surface position primarily increase
with increasing CFL number and decreasing horizontal resolution. Overall, Model B generally pro-
duces smaller free surface position errors than Model A, with the exception of the coarsest horizontal
grid. Errors in the total energy also increase with increasing CFL number and decreasing horizontal
resolution. For small CFL numbers, Model B has overall smaller errors than Model A. For large CFL
numbers, the two methods converge to the same errors.

Validation case: propagation of irregular nonlinear waves over a bar
Finally, the selected approach, Model B is validated by simulating the propagation of irregular waves
over a submerged bar, reproducing a non-breaking flume experiment of [2]. In the experiments, waves
were generated using a piston-type random wave-maker with a JONSWAP spectrum with a peak
enhancement factor of γ = 3.3, with a significant wave height of Hm0 = 0.34 m and a peak period
of Tp = 2.39 s (fp = 0.418 Hz). The simulation results are compared to the free surface elevation
measured at 16 wave probes throughout the domain. In the numerical model, waves are generated in
a relaxation zone using the wave spectra calculated at the probe located at the base of the submerged
bar, and absorbed in a relaxation zone at the end of the beach.

The simulated wave energy spectra (with NT = 7, ∆x = 0.05 m, and ∆t = 0.07 s) agree well
with the experimental data, showing the transfer of energy to super- and sub-harmonics (up to 5fp,
e.g. Figure 2) as the waves shoal and pass over the trough behind the bar. The spatial variability
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Figure 2: Simulated and measured wave energy density spectra at (left) the base of the bar and (right) the
crest of the bar. Vertical black lines indicate the location of the peak frequency and the first four harmonics.



of the integral parameters (significant wave hight, mean period, kurtosis, horizontal and vertical
asymmetry) also agrees well with the observations along the bathymetric profile.

Conclusions
Two test cases were used to compare the convergence properties, propagation errors, and CPU time
of two approaches to solving the fully nonlinear potential flow problem in 1DH. The Model B spectral
approach shows improved accuracy and efficiency in comparison with the Model A fourth-order finite
difference schemes. Model B has an exponential convergence rate, while Model A has an algebraic
convergence rate, as expected. Based on these tests, the Model B approach was selected and applied
to a final validation test case where comparison with experimental data showed its ability to simulate
the propagation of irregular nonlinear waves in a wave tank. The optimal value of the vertical
resolution, which reduces model errors while limiting the computational time, is recommended in
the range of 5 < NT < 10 for practical applications with this model. Ongoing work includes the
optimization and extension of the Model B approach to 2DH domains.

References

[1] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully synchronous multifrontal
solver using distributes dynamic scheduling. SIAM J. of Matrix Anal. and Appl., 23(1):15–41,
2001.

[2] F. Becq-Girard, P. Forget, and M. Benoit. Non-linear propagation of unidirectional wave fields
over varying topography. Coast. Eng., 38:91–113, 1999.

[3] H. B. Bingham and H. Zhang. On the accuracy of finite-difference solutions for nonlinear water
waves. J. Eng. Math, 58:211–228, 2007.

[4] G. Ducrozet, H. B. Bingham, A. P. Engsig-Karup, F. Bonnefoy, and P. Ferrant. A comparative
study of two fast nonlinear free-surface water wave models. Int. J. Numer. Meth. Fluids, 69(11):
1818–1834, 2012. doi: 10.1002/fld.2672.

[5] A. P. Engsig-Karup, H. B. Bingham, and O. Lindberg. An efficient flexible-order model for 3D
nonlinear water waves. J. Comp. Phys., 228:2100–2118, 2009.

[6] S. T. Grilli and J. Horrillo. Shoaling of periodic waves over barred-beaches in a fully nonlinear
numerical wave tank. Int. J. Offshore Polar Eng, 9(4):257–263, 1999.

[7] B. Li and C. Fleming. A three dimensional multigrid model for fully nonlinear water waves.
Coast. Eng., 30:235–258, 1997.

[8] M. M. Rienecker and J. D. Fenton. A Fourier approximation method for steady water waves.
J. Fluid Mech., 104:119–137, 1981.

[9] Y. Tian and S. Sato. A numerical model on the interaction between nearshore nonlinear waves
and strong currents. Coast. Eng. Journal, 50(4):369–395, 2008.

[10] C.-P. Tsai and D.-S. Jeng. Numerical Fourier solutions of standing waves in finite water depth.
Applied Ocean Res., 16:185–193, 1994.

[11] M. L. Yates and M. Benoit. Accuracy and efficiency of two numerical methods of solving the
potential flow problem for highly nonlinear and dispersive water waves. Int. J. Numer. Meth.
Fluids, 2015. doi: 10.1002/fld.3992, in press.

[12] V. E. Zakharov. Stability of periodic waves of finite amplitude on the surface of a deep fluid. J.
Appl. Mech. Tech. Phys., 9(2):190–194, 1968.


