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1. Introduction 

Deep water structures are usually positioned in sea 

by mooring lines, which perform strong nonlinearity. 

The structure system usually has a very low natural 

frequency, and can be inspired lager reciprocating drift 

motion by nonlinear wave force at low frequency.  

To deal with the problem due to mooring 

nonlinearity, Sarkar and Eatock Taylor (1998, 2001) 

proposed a two-scale perturbation method to 

investigate the interactions of nonlinear mooring 

stiffness and wave hydrodynamics, and established a 

frequency domain perturbation method for this 

problem. 

The nonlinear problem is more widely studied in 

the time domain, and coupling analysis must be carried 

out for wave interaction with floater and mooring 

system. As the total time domain coupling analysis is 

complex and tremendous, hydrodynamic load is often 

computed by a perturbation expansion method (as Yang 

et al (2012)), or by Cummins method based on the 

frequency domain perturbation expansion (as Kim et al 

(2013)).  

Perturbation method is powerful when body 

motion is not very large. However, in deep water the 

floater may oscillate with an amplitude larger than 

wave lengths. At this condition, the traditional 

perturbation expansion is obviously not correct. The 

most obvious disadvantages of the present perturbation 

method are that the phase change of the wave load due 

to body motion and the change of the encountering 

frequency of incident waves are unable to be 

considered. To solve those problems, a time domain 

twice expansion method is proposed in this study. The 

displacement of floater motion is divided into two part: 

one is a large amplitude motion with low frequency, 

and the other is an oscillation about the low frequency 

motion at higher frequency. The large amplitude 

motion at low frequency is obtained by numerical 

filtering of body response with progress of the 

simulation. This position is called as the instantaneous 

mean position. The smaller amplitude motion about the 

mean position is computed by perturbation expansion 

method. Thus, it can be guaranteed that the perturbation 

expansion factor is always smaller.   

 

 

The numerical filtering is implemented by a 

wavelet transform method in this study, and a HOBEM 

is applied to calculate the wave field at each time step. 

At each time step, the overall body and free surface 

meshes vary with the low frequency movement, but the 

relative location of the computational grids is invariant. 

Recursive interpolation is used to get the physical 

values for those nodes inside the free surface mesh, and 

Taylor series expansion is used for the boundary nodes 

after the body and the mesh have translated to a new 

position. At the new position, computation is similar 

with that for wave interaction with a body moving in a 

steady current.  

2. Definition of coordinate systems and 

decomposition of body motion 

To describe the motion of a floating body, three 

coordinate systems (Fig. 1) are defined. The first is an 

earth-fixed coordinate system  at the initial 

equilibrium position of the body, the second is an 

instantaneous mean coordinate system 

translating horizontal with the body at low frequency 

and the third is a body-fixed coordinate system 

. The origins of the coordinate systems  

and  are at the still water surface, and the  

and the  axes measure vertically upward.  

 
Fig. 1 Definition sketch of coordinate systems 

 

When the body is undergoing a large drift motion, 

the second coordinate system will be far away from the 

first one. For any point on the body, the coordinate 

vector X in the earth-fixed coordinate system can be 
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represented by the coordinate vector 𝑿′ in the body-

fixed coordinate system and it motion components in 

the following relationship:  

( ) ( )t t X X'              (1) 

and  

0( ) ( ) ( ( ( ) ( ))t t t t     X X' X'      (2) 

where  is the displacement of the instantaneous 

mean coordinate system  with only the 

horizontal translation, 𝑿𝟎
′  is the body rotation center,  

ξ  and   are the body translation and rotation 

components relative to the instantaneous mean 

coordinate system.  will be obtained by a 

numerical filtering method with the simulation of body 

response, which will be introduced in the next section.  

Following the Stokes expansion procedure, we 

expand the body motion relative to the instantaneous 

mean position  into perturbation series as 

follows: 

  
( 1 ) 2 ( 2 )( ) ( , ) ( , )t t t       X X         (3) 

(1) 2 (2)( ) ( , ) ( , )t t t     X X        (4) 

The superscripts (1) and (2) indicate separately the 

wave components at the first-order and the second-

order of ε respectively.  

In the same way, the velocity potential  and wave 

elevation  can be expanded as 
(1) 2 (1)( , ) ( , ) ( , )t t t      X X X       (5) 

(1) 2 (1)( , ) ( , ) ( , )t t t      X X X       (6) 

at the instantaneous mean positions by the parameter .  

Then the Stokes perturbation expansions are 

substituted into the Laplace equation and the 

corresponding boundary conditions are expanded about 

the still water surface and the instantaneous mean body 

surface. The boundary value problems at the order of ε 

and ε2 in the perturbation expansions can be established. 

As the instantaneous mean coordinate system 

moves with very low frequency, the acceleration of the 

system is a higher order term of ε, and the system can 

be approximated as an inertial system. Thus, the 

governing equation, boundary conditions, wave force 

and motion equation are the same as in the earth-fixed 

coordinate system, and computation can be done in the 

same way as for a steady moving body in waves (Liu et 

al, 2012). 

3. Computation of mean position and mesh 

translation  

Deep water moored platforms may move to far 

distances from their initial positions. For accurate 

computation, an instantaneous mean position is needed 

to get and carries out perturbation expansion about the 

position. According to the time sequence of the motion 

response simulated, we use a wavelet transform to get 

the mean position of the motion response (Chritopher 

and Gilbert, 1998). 

Assuming that the time sequence of the motion 

response is Ξ(t) (0, t), and is progressing with the time, 

the continuous wavelet transform of a discrete 

sequence is defined as the convolution of Ξ with a 

scaled and translated version of Ψ0(η). By the 

convolution theorem, the wavelet transform is the 

inverse Fourier transform of the product 
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In the actual application of wavelet transform, the 

selection of mother wavelet function has a crucial 

impact on the analysis results. For the same problem, 

the analysis results may differ very much if different 

mother wavelets are chosen. In the present analysis, the 

instantaneous mean displacement  is not needed 

to be unique, but only the total displacement  to 

be needed unique. The study in this paper is based on 

the Morlet wavelet as the mother wavelet. Since the 

wavelet transform is a band pass filter with a known 

response function, it is possible to reconstruct the 

original time series using either deconvolution or the 

inverse filter.  
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where Cδ is the reconstruct coefficient. For the mean 

position of the displacement time series, there is no 

need to evaluate all the scales. The small scales just 

should be left out and the expected results 

( ( ), ( ))x yX t X t  will be obtained. 

When the Morlet wavelet is selected as the mother 

wavelet, the value of reconstruct coefficients Cδ and 

ψ0(0) will be 0.776 and π-1/4.  
Let the body surface mesh and free surface mesh 

drift horizontally with the body mean displacement. 

When the meshes moving to new mean positions, the 

right-hand side of integration equation, i.e. the known 

quantities, would be evaluated based on the values at 

the last time step. The wave elevation also needs to 

conduct recursive calculation by the free surface 

conditions. Due to the meshes moving as a whole, the 

grid shape will not change, so that the velocity 

potentials and wave elevations at the new time step can 

be determined by interpolation for those points inside 

the free surface meshes or by using Taylor expansion 

for those points at the boundaries of the free surface 

mesh as 
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where f indicates scattered potential ϕs or scattered 

wave evaluation ηs at the free surface.  

4. Example analyses 

To validate the present method, a forced moving 

truncated cylinder in monochromatic waves and a free 

moving truncated cylinders in bichromatic waves are 

considered.     

4.1. Forced motion in waves 

The first evaluation is about forced oscillation of 

a truncated cylinder in monochromatic waves. The 

cylinder has a radius of 1m and a draft of 0.5m in a 

water depth of 1.5m. The incident waves have an 

amplitude of A=0.1m with a frequency of 

𝜔=2.98rad/s (k=0.6m-1), and propagating in the x-

direction.  

The cylinder is under a forced dual-frequency 

motion: 

1 1 1 2 2 2sin( ) sin( )x A t A t           (9) 

where A1=0.4m, ω1=2.98rad/s (k1=1.0m-1) and 
φ1=45° are the amplitude, frequency and initial phase 

of the higher-frequency small-amplitude motion, and 

A2=2.0m, ω2=0.19rad/s (k2=0.05m-1) and φ2=0° are 
the amplitude, frequency and initial phase of the lower-

frequency large-amplitude motion. 

The wave exciting force on the moving body is 

decomposed into the components due to the incident 

potential and the scattered potential, which are defined 

as  and . Fig. 2 and 3 how the comparison of the 

first order and the second order forces by the present 

method with the original expanded method in the earth-

fixed coordinate system. From Fig. 2, it can be seen that 

there exists obvious phase difference between the 

incident wave forces from the two methods. When 

body mean position is positive, the phase of the 

incident wave force obtained by the present method is 

later than that by the original one, as the incident waves 

reach the present body position later than the original 

position. In turn, when the mean position is negative, 

the phase of incident wave force obtained by the 

present method is earlier than that by the original 

method. This conclusion is consistent with the actual 

situation. While to the wave force generated by the 

scattered potential, the phases of wave forces obtained 

by the two methods are the same, but the envelop 

shapes are different. The present results fluctuate 

around the original ones, and the oscillating period is 

equal to the period of the low frequency forced motion. 

The difference is from the motion velocity of the 

instantaneous mean position which is neglected in the 

original method.  

The total force is the summation of the two parts. 

It was observed the total forces from the two methods 

are quite different. The amplitude of the total force 

from the original method is steady and uniform, but the 

force amplitude from the present method oscillating 

with the time. When body moves to a position where 

incident wave force and scattered wave force have the 

same phase, the total force from the present method are 

much bigger than that from the original ones. 

Oppositely, the present results are smaller than the 

original ones. 

The second-order total wave force contains more 

complex components. There are more differences 

between the present and the original methods. 

 

 
Fig. 2 Comparison of the first-order wave force 

 

  
Fig. 3 Comparison of the second-order wave force 

 

4.2. Free motion in waves 

It is seen that the present method gets quite 

different results for a body undergoing a large 

amplitude motion from that by the original method. 

Through analysis and comparison, it is believed that the 

present method is more reasonable and more suitable 

for realistic conditions.  

This example shows the analysis for a free moving 

truncated cylinder moored by linear elastic constrain 

under the action of bichromatic waves. The cylinder 

has a radius of 1.0m and a draft of 3.0m in a water depth 

of 10.0m. A linear spring is arranged in the surge 

direction to constrain the motion of the cylinder and the 

stiffness of the spring is 4×102N/m. The natural 

vibration frequency of the system is about 0.151rad/s. 

The parameters of the bichromatic waves are shown in 
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Tab. 1 as follow. 

 
Tab. 1 Parameters of the bichromatic waves 

Items Wave 

Amplitude(m) 

Wave 

Frequency(rad/s) 

Wave 

Direction(°) 

A1 A2 ω1 ω2 θ1 θ2 

Value 0.20 0.18 2.20 2.40 0.00 0.00 

 

From the above table, we can see that the 

difference frequency of the bichromatic waves is 

0.2rad/s that is in the same order of the natural 

frequency of the system.  

Fig. 4 shows the comparison of the wave forces 

from the present and the original methods. Fig. 5 shows 

the comparison of the surge displacements from the 

present and the original methods. From Figs. 4 and 5, it 

can be seen that the first order wave forces and the body 

motion from the two methods are almost the same, as 

the total surge displacement is much less than the wave 

lengths. The second-order wave forces from the two 

method exist some differences, and difference between 

the second order displacements is very obvious. It can 

also be seen that the second order displacement is much 

larger than the first order displacement as the difference 

frequency of the bichromatic waves is close to the 

natural frequency of the moored cylinder.  

 

 
Fig. 4 Comparison of wave forces  

 

 
Fig. 5 Comparison of surge displacement 

5. Conclusion 

A twice expansion method in the time domain is 

developed in this study. The present method firstly gets 

the instantaneous mean position with the simulation by 

filtering the total motion response, and then carries out 

perturbation expansion about the mean position to 

assure the perturbation expansion factor is always 

smaller. The present method can deal with the problems 

of the phase change of incident wave action with the 

body motion and the change of encountering frequency 

of the incident waves with body moving velocity.  

Two numerical examples are carried out, and 

comparisons are made between the present and the 

original methods. One is the forced motion of a 

truncated cylinder with dual-frequencies in a 

monochromatic waves, and the other is the free motion 

of a moored truncated cylinder in a bichromatic waves. 

Comparisons show that when the displacement of the 

body motion is large, both the first order and the second 

order force are different for the two methods, and when 

the displacements are smaller comparing to wave 

lengths the first order forces and displacements are 

almost the same, but the second order responses still 

have obvious difference. 
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