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Highlights:

• Radiation problem for a cylinder submerged in the fluid with a finite elastic plate is solved in two ways:
Wiener-Hopf technique and matched eigenfunction expansions.
• The influence of a finite patch of ice-free water in an ice sheet on the hydrodynamic characteristics of oscil-
lating cylinder is investigated.

1. Introduction

The linear 2-D time-harmonic water-wave problem de-
scribing small oscillations of a horizontal cylinder is
considered for two classes of a hydroelastic system. The
fluid surface is either open, except in a finite region
where it is covered by a thin-elastic plate, which rep-
resents an ice floe, or covered by two semi-infinite thin
elastic plates with different properties, except in a fi-
nite patch of ice-free water (polynya). In both cases,
the fluid domain is of infinite horizontal extent and fi-
nite depth.

Radiation of waves by a cylinder submerged in fluid
having mixed boundary conditions on the upper sur-
face were studied in [1,2] for a floating semi-infinite
elastic plate and in [3,4] for two semi-infinite elastic
plates connected by the vertical and flexural rotational
springs as a model of a partially frozen crack in ice
sheet. These problems were solved by the method of
matched eigenfunction expansions for the velocity po-
tentials. The interaction of a submerged body with a
floating elastic platform of finite length was considered
by Hermans [5] using the Green’s function method.

In this paper, Hermans’s problem is solved by
two different methods: Wiener-Hopf technique and
matched eigenfunction expansions. Wave generation
by an oscillating submerged cylinder in the presence
of a polynya is studied only by using the method of
matched eigenfunction expansions. The hydrodynamic
load and the amplitudes of vertical displacements of the
free surface and elastic plates are calculated.

2. Mathematical formulation

The problem is analyzed in 2-D Cartesian coordinate
system with the x-axis directed along the undisturbed
mean water surface perpendicular to the cylinder axis,
and the y-axis pointing vertically upwards. The fluid is
assumed to be inviscid and incompressible, its motion
is irrotational. The depth of fluid is equal to H. The
plates are in contact with the water at all points for
all time. The plate drafts are neglected. It is assumed
that the edges of the plates are free.

The wave motions are generated by the small oscil-
lations of submerged rigid body with wetted surface S
at a frequency ω with amplitudes ζj (j = 1, 2, 3) for the
sway, heave and roll problems, respectively. Under the
usual assumptions of linear theory, the time-dependent
velocity potential can be written as

Φ(x, y, t) = ℜ

[

iω

3
∑

j=1

ζjϕj(x, y) exp(iωt)

]

, (1)

where ϕj(x, y) are complex valued functions and t is
time. The vertical displacements of the free surface
and elastic plates W (x, t) can be determined from the
relation

∂W
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∂y
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∣

∣

∣
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By analogy with representation (1), the expression for
W (x, t) can be written in the form:

W (x, t) = ℜ

[ 3
∑

j=1

ζjwj(x) exp(iωt)

]

,

wj(x) =
∂ϕj

∂y

∣

∣

∣

∣

y=0

. (2)

The radiation potentials ϕj(x, y) satisfy the
Laplace equation in the fluid domain

∇
2ϕj = 0 (−∞ < x < ∞, −H < y < 0) (3)

except in the region occupied by the cylinder.
The boundary condition on the closed smooth con-

tour of the submerged body S has the form:

∂ϕj

∂n
= nj (x, y ∈ S). (4)

Here, n = (nx, ny) is the inward normal to the contour
S. The notations

n1 = nx, n2 = ny, n3 = (y−y0)n1−(x−x0)n2 (5)

are used where x0, y0 are the coordinates of the center
of the roll oscillations.



The boundary condition at the bottom is

∂ϕj

∂y
= 0 (−∞ < x < ∞, y = −H). (6)

In the far field a radiation condition should be imposed
that requires the radiated waves to be outgoing.

Finite plate. The upper boundary of the fluid
is covered partly with an elastic homogeneous plate
(0 < x < L, y = 0) with mass density ρ and thickness
d. The free surface condition in the open water regions
is given by

∂ϕj

∂y
−

ω2

g
ϕj = 0, (x < 0, x > L, y = 0), (7)

where g is the acceleration due to gravity.
On the elastic covered surface, the radiation po-

tentials ϕj(x, y) satisfy the boundary condition in the
form

(

D
∂4

∂x4
− ω2M + gρ0

)

∂ϕj

∂y
− ρ0ω

2ϕj = 0 (8)

(0 < x < L, y = 0),

where D = Ed3/[12(1−ν2)], M = ρd, E is the Young’s
modulus for the elastic plate, ν is its Poisson’s ration,
ρ0 is the fluid density. At the plate edges, free edge
conditions require vanishing the bending moment and
the shear force:

∂3ϕj

∂x2∂y
=

∂4ϕj

∂x3∂y
= 0 (x = 0+, L−, y = 0). (9)

Polynya. Two semi-infinite elastic plates Λ1 (x <
0) and Λ2 (x > L) float on water surface. The left
plate Λ1 and the right plate Λ2 have the characteris-
tics E1, d1, ρ1, ν1 and E2, d2, ρ2, ν2, respectively.
The boundary conditions for the fluid in contact with
the plates Λ1 and Λ2 are similar (8) using the corre-
sponding values of E, d, ρ, ν. Free edge conditions (9)
are fulfilled at (x = 0−, L+, y = 0). The free surface
condition (7) takes place at (0 < x < L, y = 0).

3. Method of solution.

In solving the problem (3), (4), (6)-(9), for each of the
body oscillation modes we introduce an unknown mass
source distribution σj(x, y) over the contour S. The
radiation potentials at any point of fluid can be repre-
sented in the form

ϕj(x, y) =

∫

S

σj(ξ, η)G(x, y; ξ, η)ds. (10)

The Green function G(x, y; ξ, η) satisfies the following
equation

∇
2G = 2πδ(x − ξ)δ(y − η)

with the boundary conditions analogous to (6)-(9) and
the radiation condition in the far field, and δ is the
Dirac delta-function.

We describe briefly the determination of the Green
function for the case of finite plate by the Wiener -

Hopf technique. The characteristic length l = g/ω2

and dimensionless variables and parameters are used:

x′ =
x

l
, y′ =

y

l
, t′ = ωt, H ′ =

H

l
, L′ =

L

l
,

β =
D

ρ0gl4
, γ =

M

ρ0l
.

Below, the primes are omitted. Then boundary condi-
tions on the upper surface of the fluid (7), (8) have the
form

Ω1(ϕj) ≡
∂ϕj

∂y
−ϕj = 0, (x < 0, x > L, y = 0), (11)

Ω2(ϕj) ≡

(

β
∂4

∂x4
+ 1 − γ

)

∂ϕj

∂y
− ϕj = 0, (12)

(0 < x < L, y = 0).

Two different expressions for the same Green func-
tions are used. For the first one we seek the Green
function in the form

G(x, y; ξ, η) = G0(x, y; ξ, η) + G1(x, y; ξ, η),

where G0 is the Green function for the fluid with the
infinite free upper surface and the condition of non-
flow on the bottom, G1 is the added function to ful-
fil the conditions (8), (9) on the plate. This expres-
sion is convenient when the points (x, y) and (ξ, η) are
at short distance, because the logarithmic singularity
is expressed evidently. For the determination of the
function of G1 we obtain the same problem (3), (6),
(9), (11), (12), only in the condition (12) the right side
is non-zero function. This problem is solved by the
Wiener - Hopf technique in [6]. For other case we ex-
press the Green function in the form of series. We use
the Fourie transformation on x

Ψ+(α, y) =

∞
∫

L

eiα(x−L)G(x, y)dx, (13a)

Ψ−(α, y) =

0
∫

−∞

eiαxG(x, y)dx, (13b)

Ψ1(α, y) =

L
∫

0

eiαxG(x, y)dx, (13c)

Ψ(α, y) = Ψ−(α, y) + Ψ1(α, y) + eiαLΨ+(α, y),

∂2Ψ/∂y2
− α2Ψ = 2πeiαξδ(y − η). (13d)

The solution of Eq. (13d) with the condition (6) on
the bottom has the form

Ψ(α, y) = C(α)Y (α, y)+

2π

α
eiαξ

{

sinh(α(y + H)) cosh(α(η + H)) (y > η)
cosh(α(y + H)) sinh(α(η + H)) (y < η),

Y (α, y) =
cosh(α(y + H))

cosh(αH)
.



We denote D±(α), D1(α) the integrals of the type
(13a-c) where the function G is replaced by the expres-
sion Ω1(G) and F±(α), F1(α) are analogous integrals
where G is replaced by Ω2(G). Further the functions
D(α) and F (α) are introduced:

D(α) = D−(α) + D1(α) + eiαLD+(α),

F (α) = F−(α) + F1(α) + eiαLF+(α),

D(α) =
2π

α
eiαξ[α cosh(αH) − sinh(αH)]×

cosh(α(η + H)) + C(α)K1(α), (14)

F (α) =
2π

α
eiαξ[(βα4 +1−γ)α cosh(αH)− sinh(αH)]×

cosh(α(η + H)) + C(α)K2(α). (15)

From the conditions (11) and (12) we have D−(α) =
D+(α) = 0, D1(α) = D(α), F1(α) = 0.

We express C(α) from (14) and substitute to (15).
After transformations we obtain

F−(α) + eiαLF+(α) =

[

2πeiαξ(γ − βα4)Y (α, η) + D1(α)K2(α)
]

/K1(α).

This equation is solved in a similar manner as in
[6]. The solution of this equation and expressions
for the Green function are detailed in [7]. An alter-
native method of determining the Green function is
the method of matched eigenfunction expansions which
was used in [1-4].

Using boundary condition (4) on the body surface
S, we obtain the integral equation for the functions
σj(x, y)

πσj(x, y) −

∫

S

σj(ξ, η)
∂G

∂n
ds = nj .

Once the distribution of the singularities σj(x, y) has
been calculated, we can determine the radiation poten-
tials (10). The vertical deflections of the free surface
and elastic plates can be determined from (2):

wj(x) =

∫

S

σj(ξ, η)
∂G

∂y

∣

∣

∣

∣

y=0

ds.

The radiation load acting on the oscillating body is
determined by the force F = (F1, F2) and the moment
F3 which, without account for the hydrostatic term,
have the form

Fk =

3
∑

j=1

ζjτkj (k = 1, 2, 3),

τkj = ρω2

∫

S

ϕjnkds = ω2µkj − iωλkj

where µkj and λkj are the added mass and damping
coefficients, respectively. There is the symmetry con-
dition τkj = τjk. Reciprocity relations between the
damping coefficients and wave characteristics in the far

field agree with the case of infinitely extended free sur-
face (see, e.g., [8]) for a finite elastic plate and with the
case of a crack between two semi-infinite elastic plates
[3,4] for a polynya.

4. Numerical results

The calculations are performed for the elliptic contour
S : (x − c)2/a2 + (y + h)2/b2 = 1, where a and b
are the major and minor axes of the ellipse, respec-
tively, and the coordinates of its center are equal to
x = c, y = −h (h > 0). Rotational oscillations oc-
cur with respect to the point x0 = 0, y0 = −h in (5).
The following input data are used: E = 5GPa, ρ =
922.5kg/m3, ν = 0.3, ρ0 = 1025kg/m3, d = 2m, b =
10m, a = h = 20m, H = 500m.

Figures 1, 2 represent dimensionless values of the
coefficients of hydrodynamic load as functions of di-
mensionless frequency b/l = ω2b/g:

µ∗

kj =
µkj

πρ0b2
, λ∗

kj =
λkj

πρ0ωb2
,

µ∗

k3 =
µk3

πρ0b3
, λ∗

k3 =
λk3

πρ0ωb3
(k, j = 1, 2),

µ∗

33 =
µ33

πρ0b4
, λ∗

kj =
λkj

πρ0ωb4
.

More detailed results for the hydrodynamic load on
the cylinder and the amplitudes of the displacements
of the ice sheets and the free surface will be presented
at the Workshop.
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Figure 1: The hydrodynamic load of a cylinder beneath an ice floe at c/b = 5. Curves 1 and 2 correspond to solutions

obtained at L/b = 15 by Wiener-Hopf technique and matched eigenfunction expansions, respectively. Curve 3 shows

the results for a semi-infinite ice sheet [2].

Figure 2: The hydrodynamic load of a cylinder beneath a polynya between two ice sheets with identical properties.

Curves 1 and 2 correspond to L/b = 6, c/b = 3 and L/b = 10, c/b = 5, respectively. Curve 3 shows the results for

infinitely extended free surface.


