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1. INTRODUCTION 

Liquid/structure or liquid/liquid impact is widely 

observed in nature. Examples include wave impact on 

marine structures and coastline, droplet impact or 

waterfalls on solid floor, a solid body passing through 

a liquid surface. While high speed liquid impacts can 

cause structural damage or failure and many other 

adverse effects, these processes are also used in 

applications such as 3-D printing technology, cool jet-

cutting and cleaning of metals, coating and painting.   

In many water impact studies, the bodies are 

treated as rigid and impermeable. However, in many 

other fluid/solid impact processes, the body surface 

may be non rigid or permeable. There may be surface 

erosion or other types of material removal that changes 

the body shape during impacts, such as liquid drop 

impacting a soil or granular materials [1], metal cutting 

through jets [2,3], surface penetration through shaped 

charges [4,5], and cavitation erosion by high-speed jets 

generated during collapse of vapour bubbles [6,7]. In 

maritime engineering, liquid may penetrate through a 

perforated or porous surface, and typical examples can 

be found in [8 – 11]. 

In this study we consider the two dimensional self 

similar velocity potential flow problem for impact 

between a liquid wedge and a permeable or/and 

erodible body [12]. Integral hodograph method [13] is 

used. It enables the original partial differential equation 

with the nonlinear boundary conditions on the 

unknown free surface to be converted into a system of 

intergro-differential equations along straight lines in 

the parameter plane. The method has been successfully 

used in variety of impact problems [12 - 14]. However, 

the application of the method to the present problem 

has some new difficulties. On the impermeable solid 

surface, the normal velocity is prescribed, while on the 

free surface the pressure is provide. On the permeable 

body surface or the moving wetted surface caused by 

erosion, neither of these functions is known in advance 

explicitly. Instead the boundary condition is written in 

terms of a relationship between the pressure and the 

normal component of the velocity trough the body 

surface. This leads to a new singularity on the 

mathematical formulation. Further in the case of an 

erodible body, the wetted surface of the solid deforms 

and body material moves away, and its shape into the 

body is determined by the local speed of erosion or 

melting. The formulation of the problem includes an 

additional equation through a law relating the speed of 

erosion with other flow parameters, which gives the 

means to determine the unknown shape of the interface.  

Various case studies are considered. The first one 

is porous body, for which a linear relationship between 

the pressure and normal velocity through non 

deforming body boundary is employed. The second 

case is a perforated body, for which the quadratic 

relationship between the pressure and the normal 

velocity trough the non deforming body surface is used. 

These two cases are related to the problems in coastal 

and offshore engineering [8, 9, 15] where the 

porous/perforated bodies are used to reduce the 

hydrodynamic impact loading on a structure. The third 

case considered here is associate with jet-cutting or 

penetration of the shaped charge, in which the solid 

material is removed by the hydrodynamic pressure and 

shear stress.  There are some previous studies related to 

this case, in particular, that done by Pool [5], which are 

based on a further development of the classical 

Birkhoff-problem of steady impinging jets.  
   

2. FORMULATION OF THE PROBLEM  

We consider the impact problem between a liquid 

wedge of half-angle   and a permeable and/or 

erodible body. A sketch of the problem and the 

definitions of the geometric parameters are shown in 

Fig. 1a. The flow is self similar and will be studied in 

the frame of reference with its origin attached to the 

stagnation point A which may move during the erosion 

of the body surface.  

The liquid wedge has uniform velocity at infinity, 

which is indicated as V in figure 1a and it is relative to 

point A. The symbol 
niv  in the figure is the normal 

velocity of surface OA, which is zero at point A, as the 

origin of the coordinate system is fixed there. Within 
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this surface, AD is the wetted surface of the body after 

erosion and forms an angle / 2A   with the y-axis 

at point A. The symbol npv  in the figure is the velocity 

due to the body surface permeability.  Thus, the total 

normal component of the velocity of the liquid along 

OA can be expressed as 
n ni npv v v  , in which 0npv   

on the free surface OD.   

For a constant impact velocity of the liquid wedge, 

the time-dependent problem in the physical complex 

plane Z X iY   can be written in the stationary 

similarity plane z x iy   in terms of the self-similar 

variables / ( )x X Vt , / ( )y Y Vt  where t is the time. 

The complex velocity potential ( , )W Z t   for the self-

similar flow can be written as 

 

 2 2( , ) ( ) ( , ) ( , )W Z t V tw z V t x y i x y    .      (1) 

The problem is to determine the function ( )w z  which 

conformally maps the similarity plane z  onto the 

complex-velocity potential region w . We choose the 

first quadrant of the   plane in figure 1b as the 

parameter region to derive expressions for the 

nondimensional complex velocity, /dw dz , and for 

the derivative of the complex potential, /dw d , both 

as functions of the variable  . Once these functions 

are found, the velocity field and the relation between 

the parameter region and the physical flow region can 

be determined as follows: 
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The boundary-value problems for the complex 

velocity function, /dw dz , and for the derivative of the 

complex potential, /dw d , can be formulated in the 

parameter plane. Then, applying the integral formulae [13] 

determining an analytical function from its modulus and 

argument, and from its argument on the boundary of the 

first quadrant, respectively, we obtain the following 

expression for the complex velocity and for the derivative 

of the complex potential [16] 
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Figure 1. Sketch of the problem for impact between a liquid 

wedge (dotted line at the time of impact) and an 

erodible/permeable wall: (a) similarity plane and (b) 

parameter plane.  
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where K is a real scale factor, 
0 0( )v v    is the velocity 

magnitude at point O , 1( ) tan ( / )n sv v    is the angle 

between the velocity vector and the free surface, and 
1( ) tan ( / )n sv v    is the angle between the velocity 

vector and the interface.  

The functions ( )v   and ( )   are determined from 

dynamic and kinematic boundary conditions. In 

contrast to the impact between the liquid and 

impermeable/ no eroding solid wedges [14], the 

functions ( )   and  ( )   now become unknown on AD, 

as well as OD. According to the definitions, these 

functions can be found if the normal component of the 

velocity, n ni npv v v   on the body surface is known. 
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The normal component of the velocity, 
niv , determines 

by the shape of the interface, i.e. Im( )i

niv ze  , where

z  is complex conjugate coordinate and  is the slope 

to the interface. The normal component of the velocity 

due to the permeable interface, 
npv , depends on the 

pressure on the body. For porous or/and permeable 

surfaces, the following equations were proposed in [9, 

10]  

0np pv c , 
0np pv c ,        (5) 

where 
pc  is the pressure coefficient, 

0 and 
0   are 

the non-dimensional coefficients characterizing the 

porosity and perforation of the thin wall, respectively. 

The method of successive approximations is used 

to solve the total system of integral equations through  

the iteration procedure.  

 

3.    NUMERICAL RESULTS  

Results for the angles of the liquid and solid wedges 

45A     are shown in figure 2. For the 

impermeable surface in case (a), the pressure decreases 

almost linearly from the wedge apex to the root of the 

tip jet, while in case (b) the pressure decreases more 

mildly and then faster near the root of the tip jet. This 

is caused by larger pressure reduction near the apex of 

the wedge due to the larger flowrate into the wedge 

side there.  

 
              a)            b) 
Figure 2. Streamline patterns, free surfaces (solid lines), and 

the pressure distribution for the liquid and solid wedges  

45A   and 45   , increment in the stream function 

0.1  ,  and (a)
0 =0 and  (b) 

0 =1.0. 

 

For the part AD of the interface, the body surface 

erosion considered in the present study is assumed to 

be due to an extremely high normal or/and shear 

stresses during impact by liquid. This behaviour occurs 

when the stress has exceeded the yield stress of the 

material. The problem of flow/structure interaction of 

eroding bodies has some analogy to the classical Stefan 

problem for bodies undergoing melting, dissolution, or 

other similar processes of phase change. The choice of 

an appropriate model of erosion significantly depends 

on a particular problem and the cause of the erosion. 

For the present impact problem, the local normal 

velocity *V  of the eroding surface is assumed to be 

linearly related to the pressure P and the shear stress  . 

In non-dimensional form the constitute equation of 

erosion takes the form  

* 2

p p sv K c K v   ,      (6) 

where 
sv  is dimensionless tangential component of the 

velocity, pK  and K  are the material-dependent 

constants. In physical reality, the erosion of the body 

surface is due to both the pressure and the shear stress, 

as shown in Eq. (6). However, if 0K   and 0pK 

in Eq. (6), it gives 
* 0v   at point D, since 

pc at point 

D equals to zero. Thus, we introduce a minimal 

velocity 
*

minv . When the 
*v  obtained from Eq.(6) is 

smaller than 
*

minv , we set 
* *

minv v  . The obtained 

results are shown in figure 3. More results will be 

provided in the workshop and can be found in 

Semenov and Wu [12] (submitted for publication). 

.  

          (a)     (b)    
Figure 3. Impact between a liquid wedge of half-angle 

10    and an initially flat solid wall with 
* 0.6Av  , (a) 

* *

min / Av v =0.9, (b) 
* *

min / Av v =0.7. The lower dashed region 

corresponds to the restriction 
* *

min( )v s v  along the interface. 



4. CONCLUSIONS 

The present  work gives an extended summary to the 

work of Semenov & Wu [12] submitted for publication. 

Its calculations confirmed the expected reduction of the 

hydrodynamic pressure on a porous or perforated 

wedge.  

For an eroding wall, the interface between the 

liquid and the body is assumed to change according to 

the constitute law relating the rate of erosion and the 

normal pressure. The result shows that in this case the 

erosion shapes the cavity in such way to provide nearly 

constant pressure on most part of the cavity surface. 

The cavity shape is composed of an arc of a near circle, 

where the pressure is almost constant, and an almost 

straight line where the restriction * *

min ( )v v s   is 

applied.  
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