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 A wave phase-based force decomposition allows inertia and drag forces to be separated, we focus here on the 

inertia force on conductor arrays (closely spaced vertical cylinders). 

 The measured inertia force coefficient of the 1
st
 harmonic force component is very close to 2 for waves both with 

and without current. For waves without current, the coefficient of the 2
nd

 harmonic force is within 10% of 5/4, the 

corresponding term in the FNV model. For waves with current, the coefficient of the 2
nd

 harmonic force increases 

noticeably as the current increases.  

 The effect of conductor spacing is investigated numerically. For the jacket end-on, even when the closest 

conductors touch, the change in effective 𝐶𝑀 ~ –5%. In contrast for broadside where the spacing is effectively 

closer, the change is ~ +45%.  

1. Introduction 

The hydrodynamic loading on space-frame offshore structures has been re-visited recently by Taylor et al. (2013) and 

Santo et al. (2014) because of the growing interest in the oil industry in the re-assessment of ageing offshore 

infrastructure. For space-frame structures, the Morison equation has been used universally for design; this describes 

the total hydrodynamic force as a sum of drag and inertia forces (Morison et al. 1950). Typically the most extreme 

fluid-loading regime is dominated by drag; hence the study of Taylor et al. (2013) was focused on the behaviour of the 

drag term. For regular waves with in-line current, the drag term has been shown to be overestimated by the Morison 

equation because of the occurrence of additional blockage which further reduces the mean flow on the structure. This 

additional flow reduction is in addition to the standard industry practice of including a simple current blockage factor 

as documented in API (American Petroleum Institute 2000).  

Here we report observations on what we assume are the linear and nonlinear potential flow (inertia) forces in recent 

experiments on a jacket model. We compare the force coefficients for the first three frequency harmonics of the 

measured force (those components out of phase with the wave crests) with the FNV-force equation from Faltinsen et 

al. (1995), see also Malenica & Molin (1995), for the total horizontal load on vertical cylinders. This allows us to 

investigate the contribution of the linear and non-linear components of the total inertia force. Previous experimental 

studies have been carried out by Chaplin et al. (1997) and others to look at the force on a single or a few vertical 

cylinders. Here, we also look at the force on arrays of cylinders representing conductors, examining the interaction 

effects on the linear inertia term on arrays of cylinders for different wave directions.  

2. Experimental set up & data analysis 

A series of experiments were conducted in the towing tank in the Kelvin Hydrodynamics Laboratory of Strathclyde 

University, Glasgow, as an extension of previous work to verify the improved fluid loading recipe on a scaled jacket 

model, as well as to formulate an appropriate current blockage recipe for irregular waves. A 1:80 jacket model was 

constructed from stainless steel (figure 1 shows the model); this resembles a typical second generation North Sea 

jacket 4-leg structure. The jacket was hung below the carriage, such that the still-water submerged height of the jacket 

was 1.45 m. The carriage was moved at constant speed along the tank to simulate uniform current, and the model was 

exposed to regular waves of various wave heights with a fixed wave period of 1.4 sec on a water depth of 2.1 m. The 

jacket was mounted in such a way that the total horizontal reaction due to the hydrodynamic load was measured 

directly by a force transducer. A wave gauge was mounted on the carriage between the jacket model and the side of 

the tank to provide phase information of the undisturbed incoming waves. A combination of 5 different heights of 

regular wave and 3 towing speeds (current) were tested. 

The jacket model is tapered when viewed end-on and rectangular broadside (see figure 1 for the plan view). Also 

shown are the conductor support frames and the arrangement of the conductor arrays (vertical closely spaced uniform 

cylinders). The conductor support frames, made of square hollow members instead of cylindrical members, were 

supported on the horizontal bracings at end-on instead of extending from the jacket legs (as commonly found in actual 

offshore jackets) to ease the fabrication process. The conductors in the jacket model were designed to be removed 



easily from the carriage so a combination of cases with and without conductors for the same wave loading direction is 

possible. For hydrodynamic loading in the broadside direction, there are rows of four conductor tubes side-by-side 

orthogonal to the flow direction. In contrast, for end-on direction, there are rows of only two conductor tubes. 

Interaction effects are expected in the inertia forces of broadside and end-on, both with conductors. In total, three 

configurations of the jacket model were tested: broadside with conductors, end-on with conductors, and end-on 

without conductors. No cases of broadside without conductors were tested. 

 

 

 

 

 

 

 

 

 

Figure 1: (Left) 3D view of the jacket model and (Right) plan view of the model showing the arrangement of 

conductor arrays. 

The total measured forces were decomposed into a sum of drag and inertia forces following the decomposition 

method outlined in Santo et al. (2014). The phase information of the wave is required, and the key assumption made is 

force symmetry around the wave crest/horizontal velocity peak. The total force was extracted after the starting 

transients when the force is periodic in time, and phase-averaged (cycle-by-cycle) over a record of 10 – 20 wave 

cycles before the decomposition. That part of the total force in-phase with the wave velocity is assumed to be drag, the 

remainder that is out of phase is assumed to arise from potential flow load components, with the linear part (in both 

frequency and wave amplitude) being the Morison inertia term. Figure 2 (left) shows a plot of the decomposition for 

0.24 m regular waves in the end-on direction with no current. The drag force will be compared with the new blockage 

theory (Taylor et al. 2013) elsewhere. Here, we focus on the inertia force and its harmonics (Fig. 2 top right). 

3. Inertia force on conductor arrays in end-on 

To investigate the experimentally measured inertia force, we chose to look at the measured inertia force on the 

conductor arrays only, by subtracting the inertia force on the model without conductors for waves end-on from the 

inertia force for the same model tested with conductors. Thus, the effects of legs, braces, and other cylindrical 

members that are non-orthogonal to the flow as well as square hollow members which have different 𝐶𝑀 values 

should be removed. This will allow a cleaner investigation: all the conductor tubes run vertically the full height of the 

jacket, forming an array of uniform, closely spaced cylinders of diameter 1.6 cm. 

We fit the measured inertia forces using the MATLAB curve fitting toolbox. The phase of the wave is obtained from 

the wave gauge signal, so the phases of both drag and inertia terms are known. We take a -90° phase shift for the 

harmonic term of the inertia force relative to the wave crest and obtain force coefficients of the 1
st
 up to 3

rd
 harmonic 

terms in frequency. We compare the force fits with those of the nonlinear potential flow FNV force on a single 

uniform vertical surface-piercing cylinder (Faltinsen et al. 1995): with  𝜂 = 𝐴 𝑐𝑜𝑠 𝜔𝑡 as the linear part of the wave 

profile, the FNV force is 𝐹𝐼𝑛𝑒𝑟𝑡𝑖𝑎/𝜋𝑟2 = −2𝜌𝑔𝐴 𝑠𝑖𝑛𝜔𝑡 − 5/4𝜌𝑔𝐴2𝑘 𝑠𝑖𝑛2𝜔𝑡 − 2𝜌𝑔𝐴3𝑘2 𝑠𝑖𝑛3𝜔𝑡, where 𝑟 is the 

cylinder radius and the other symbols have their usual meanings. The FNV force model assumes the linear inertia 

coefficient 𝐶𝑀 = 2 and contains force coefficients of 1.25 and 2 for the 2
nd

 and 3
rd

 harmonic terms, respectively.  

For waves with no current, the mean value of force coefficients on the conductor array are 2.08 (1
st
 harmonic), 1.35 

(2
nd

 harmonic) and 6.02 (3
rd

 harmonic). The first two harmonics agree reasonably well with the predictions from the 

FNV model, the 3
rd

 harmonic term differs considerably but the signal is small and noisy. We also believe that there 

may be some small phase leakage across from the drag term for the 3rd frequency harmonic.  In calculating the force 

coefficients, the effect of finite water depth was taken into account (a 5% correction to deep water kinematics 

assumption). Figure 2 (right) shows the forces on the conductor arrays for 0.24 m regular waves with no current. 
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Figure 2: Plot of total force decomposition (upper left) and inertia force decomposition (upper right), both for 

0.24 m regular waves with no current.  The bottom figure shows the surface elevation. 

The current is simulated by towing the jacket model along the tank, so the wave kinematics are unaffected by 

the current, but the encounter rate of the model with the waves changes. Hence, in a moving frame of reference 

(moving with jacket), the wave horizontal velocity can be written as: 𝑈𝑊𝑎𝑣𝑒  ~𝜔𝐴 cos [(𝜔 + 𝑈𝐶𝑘)𝑡 − 𝑘𝑥]. 

Therefore, the linear inertia term contains the encounter frequency due to current: 𝜕𝑈𝑊𝑎𝑣𝑒/𝜕𝑡~ − 𝜔(𝜔 +

𝑈𝐶𝑘)𝐴 sin [(𝜔 + 𝑈𝐶𝑘)𝑡 − 𝑘𝑥] and as a result, the total linear contribution in the inertia force with  𝐶𝑀 = 2 can 

be expressed as ~(2 ∙ 𝜕𝑈𝑊𝑎𝑣𝑒/𝜕𝑡 + 𝑈𝐶  𝜕𝑈𝑊𝑎𝑣𝑒/𝜕𝑥). When integrated over the height of the model to mean sea 

level, this yields a factor of −2 (1 +
𝑈𝐶

2𝐶∅
) ×, where 𝐶∅ = 𝜔/𝑘 is the phase speed of the wave. The additional 

term (𝑈𝐶/2𝐶∅) arises from the current contribution to the 1
st
 harmonic term. We assume that the rest of the 

FNV-model is unaltered. Clearly for the case with current, the 2
nd

 order term in wave amplitude could be 

expected to be generalised to have current × wave terms contributing to the 1
st
 harmonic component. The 3

rd
 

order term for waves with no current would be expected to produce 1
st
 and 2

nd
 harmonic contributions with the 

current present. Unfortunately we know of no extension of the FNV-model to account for the effect of current 

on the 2
nd

 and higher harmonic terms. 

Figure 3 shows the values of the force coefficients for all cases with and without current. For the 1
st
 harmonic 

term (left), the measured 𝐶𝑀 values are all close to the theoretical 𝐶𝑀 = 2 (solid line). For the coefficient of the 

2
nd

 harmonic term (right), with the theoretical FNV value of 5/4 (solid line), the experimental mean of 1.35 (for 

no current – dashed black line) is quite close. As the current speed is increased the 2nd order coefficients also 

increase, from 1.35 to 1.92 (for 0.14 m/s current – red line) and 2.18 (for 0.28 m/s current – blue line). We 

suspect the increase is associated to the current but have no model to account for it.  

4. Interactions within   

conductor arrays 

The effect of conductor arrays in 

regular waves is known to induce 

(wake) shielding, which can be 

captured with a reduced drag 

coefficient in the Morison 

equation, and either the full 

current blockage model from 

Taylor et al. (2013) or the API 

standard (figure C.3.2-4) can be 

used to account for such an 

effect. The effect on the inertia 

term however, is less clear.  

Figure 3: Plot of force coefficient 

variations with wave height and 

current speed. 



From the measured inertia forces, we obtain 𝐶𝑀 of about 2.0 for the conductor array in the end-on orientation, 

suggesting that the experimental evidence is compatible with potential flow theory prediction. What about the 

same structure in the broadside orientation? Would the arrangement of the conductor tubes end-on vs. broadside 

matter in terms of 𝐶𝑀? We have no experimental data as yet, but a simple potential flow model (Walker & 

Eatock Taylor 2005), based on Linton & Evans (1990) analysis of multiple cylinders, was used to examine this.  

For the arrangement of conductor arrays we have for the jacket model, the smallest spacing (centre to centre) to 

diameter ratio of conductor tubes (𝑆/𝐷) is 1.7 for both end-on and broadside directions. From the potential flow 

model, the net effective 𝐶𝑀 for end-on is 0.96× the undisturbed 𝐶𝑀, for broadside is 1.07×. The 

increase/decrease in 𝐶𝑀 is associated with the interaction effects of neighbouring cylinders. For broadside, there 

are four rows of four cylinders, while for end-on there are only rows of two cylinders. Whilst for the 

experimental configuration there are only small perturbations away from the undisturbed values, it is interesting 

to ask how much closer would the conductor tubes have to be to produce large changes in 𝐶𝑀? 

Figure 4 shows the variation of force coefficients for end-on and broadside. The 𝑆/𝐷 ratio was adjusted by 

increasing/decreasing the diameter of the conductor tubes while keeping their centres fixed, with 𝑆/𝐷 = 1 being 

the limit when the closest conductors touch. The interaction effect for waves end-on is small; the force 

coefficient decreases as 𝑆/𝐷 reduces up to the point when the two conductors at the first two and last two rows 

in the end-on direction are about to touch. The interaction effect is larger in the broadside direction, where the 

increase in 𝐶𝑀 is now up to 45% in the limit when the conductors in the rows of four cylinders are touching. 

Whilst closely-spaced conductor arrays are known to reduce 

the drag term in the Morison equation due to blockage, in 

contrast the linear inertia term could increase, depending on 

the arrangement of the conductor arrays. Any increase in the 

inertia term is obviously relevant to fatigue prediction. 

Figure 4: Plot of force coefficients versus 𝑆/𝐷 for end-on 

and broadside. 
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