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Highlights:

• A novel solution method for the diffraction and radi-
ation of waves by a fully submerged flap is presented.

• Insight is given into the effects on performance seen
as a result of fully submerging the device.

1. Introduction

The abundance of energy available in ocean waves has
long been of interest as a potentially significant source
of renewable energy, numerous devices having been
conceived over the years with the intent of convert-
ing it into a usable form. However, difficulties arise in
engineering devices which are both efficient and able
to survive the harsh marine environment. One of the
devices which has recently emerged as a promising can-
didate for large scale commercial success in the UK is
the Oyster device, a buoyant flap-type device under de-
velopment by Aquamarine Power LTD1. Although en-
gineering development challenges remain this has been
successfully demonstrated in terms of numerical mod-
elling, laboratory testing and in full-scale deployment.
Thus, interest has turned to mathematically modelling
devices of this type with a significant contribution hav-
ing been made by Renzi & Dias (2013).

With the issue of survivability firmly in mind, the
purpose of the present paper is to investigate the im-
pact on the performance characteristics of such devices
when they are fully submerged and thus sheltered from
the most extreme conditions which are seen in the sur-
face region. To that end a novel semi-analytic solution
method is developed.

2. Formulation

Cartesian coordinates have been chosen with the ori-
gin at the mean free surface level and z pointing ver-
tically upwards. The fluid has density ρ and is of
constant, finite depth h. The hydrodynamic model
assumes the flap to be infinitely thin and buoyant
so that when at rest it occupies the vertical plane
{x = 0,−a < y < a,−h < z < −h+ b}, where b < h.
It is hinged along a horizontal axis (x, z) = (0,−h+ c),
which is denoted in figure 1 by P . Above its pivot the
flap is free to move and below it is held fixed and ver-
tical. The fluid is incompressible and inviscid, the flow

1http://www.aquamarinepower.com/
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Figure 1: Side and plan views of the flap converter
used in the hydrodynamic model.

is irrotational and the flap oscillations are assumed to
be of small amplitude. A standard linearised theory of
water waves is used.

Small amplitude plane waves of radian frequency ω
are incident from x < 0, making an anti-clockwise an-
gle β ∈ (−π/2, π/2) with the positive x-direction.

After removing the harmonic time-dependence, the
velocity potential is decomposed as

φ (x, y, z) = AφS (x, y, z) + ΩφR (x, y, z) (1)

where Ω is the complex angular velocity, A =
igH/2ωψ0 (0) ensures an incident wave height H and
ψ0 is a normalised depth eigenfunction which will be
defined later. Here φS and φR are associated with the
scattered and radiated wave fields respectively. They
satisfy

52φS,R = 0 (2)

in the fluid,

φS,Rz − ω2

g
φS,R = 0 (3)

on z = 0, and

φSz = 0 and φRz = 0 (4)

on z = −h. Further, we have

φSx
(
0±, z

)
= 0 and φRx

(
0±, z

)
= u (z) (5)

for −a < y < a and −h < z < −h+ b, where

u (z) =

{
0, z ∈ [−h,−h+ c] ∪ [−h+ b, 0]

z + h− c, z ∈ [−h+ c,−h+ b].

(6)



The incident wave is given by

φI (x, y, z) = eik(x cos β−y sin β)ψ0 (z) (7)

where k satisfies ω2 = gk tanh kh and ψ0 (z) is a nor-
malised depth eigenfunction defined by

ψ0 (z) = N
−1/2
0 cosh k (z + h) , (8)

with N0 =
1

2
(1 + sinh (2kh)/(2kh)). The potentials

φR and φD ≡ φS−φI describe outgoing waves at large
distances from the flap.

In the frequency domain, the equation of motion of
the flap is

−iωIΩ = − iC
ω

Ω + Fw + Fe (9)

where I denotes the moment of inertia and C the
restoring moment, quantities determined by the phys-
ical properties of the flap. Fw is the time-independent
wave torque and is written as

Fw = AFS + ΩFR (10)

where

FS,R = −iωρ
∫ a

−a

∫ 0

−h
PS,R(y, z)u(z) dz dy (11)

and

PS,R(y, z) = φS,R
(
0+, y, z

)
− φS,R

(
0−, y, z

)
(12)

is the pressure difference across x = 0. Further decom-
position of the radiation force FR yields

Fw = AFS + (iωA− B) Ω (13)

where the real quantities A(ω) and B(ω) are the added
mass and radiation damping coefficients. Finally, we
decide the mechanism for power take-off should take
the form of a linear damping force and write

Fe = −λΩ (14)

where λ is assumed to be a real constant so that the
power and velocity are in phase. It may then be shown
(see Evans & Porter (2012) for example) that the cap-
ture factor can be written as

l̂ = l̂max
2B

B + |Z|

(
1− (λ− |Z|)2

|λ+ Z|2

)
(15)

where

l̂max =
1

2a

|AFS |2

8BWinc
(16)

is the maximum capture factor, achieved through op-
timal tuning (λ = |Z|) at resonance (|Z| = B), Winc is
the power per unit width of incident wave and

Z = B − iω
(
A+ I − 1

ω2
C

)
. (17)

Further, the optimal capture factor is given by

l̂opt =
2B

B + |Z|
l̂max (18)

and is achieved through optimal tuning.
Thus, in order to study the performance of the device

we must first determine the hydrodynamic coefficients
A and B along with the exciting force FS . These de-
pend on the solution of the hydrodynamic problems for
φS and φR and that is where our attention turns now.

3. Solution of the hydrodynamic prob-
lems

3.1 The scattering problem

The scattering problem deals with the diffraction of
the incident wave when the flap is held fixed vertically.
We consider the potential φD ≡ φS − φI associated
with the diffracted waves. By antisymmetry we have
φD(x, y, z) = −φD(−x, y, z) and so we only need the
solution in x > 0. We define the Fourier transform of
φD(x, y, z) by

φ
D

(x, l, z) =

∫ ∞
−∞

φD(x, y, z)e−ily dy. (19)

Then, taking Fourier transforms with respect to y of
the governing Laplace equation (2) gives(

52
xz − l2

)
φ
D

= 0. (20)

The most general solution of (20) which also satisfies
(3) and (4) with the correct outgoing wave behaviour
is

φ
D

(x, z) =

∞∑
r=0

Br(l)e
−λrxψr (z) (21)

where Br(l) are unknown coefficients,

ψr (z) = N−1/2
r coskr (z + h) , (22)

Nr =
1

2
(1 + sin(2krh)/(2krh)) and kr are the positive

roots of ω2 = −gkrtankrh for r = 1, 2, .... This is con-
sistent with the definition of ψ0(z) if we let k0 = −ik
and the functions ψr(z) for r = 0, 1, 2, ... form a com-
plete set of normalised depth eigenfunctions. Further,

λr(l, kr) =


(
k2
r + l2

)1/2
, for r = 1, 2, ...(

l2 − k2
)1/2

, for r = 0 and |l| ≥ k
−i
(
k2 − l2

)1/2
, for r = 0 and |l| < k

where the choice of branch for λ0 ensures the radiation
condition is satisfied.

We formulate the problem in terms of the unknown
pressure difference across the flap, defined in (12). Tak-
ing Fourier transforms and using the orthogonality of



the depth eigenfunctions we gain the following equa-
tions for the unknown coefficients

Br(l) =
1

2h

∫ −h+b

−h
P
S

(l, z′)ψr(z
′)dz′

≡ 1

2h

∫ −h+b

−h

∫ a

−a
PS(y′, z′)ψr(z

′)e−ily
′
dy′ dz′

(23)

for r = 0, 1, 2, ....
Invoking the inverse Fourier transform of (21) results

in an integral representation for φD(x, y, z)

φD(x, y, z) =
1

2π

∫ ∞
−∞

∞∑
r=0

Br(l) e
−λrxψr (z) eily dl

(24)

where Br(l) for r = 0, 1, 2, ... are expressed in terms of
PS(y′, z′) in (23). Applying the condition on the flap,

∂φD

∂x
(0±, y, z) = −∂φ

I

∂x
(0±, y, z) (25)

for −a < y < a and −h < z < −h+b, then results in an
integral equation for PS(y, z). This may not be solved
analytically, instead we employ a Galerkin expansion
method. We incorporate the known square-root end-
point behaviour through the approximation

PS(y, z) '
2N+1∑
n=0

P∑
p=0

αnpwn(y)τp(z) (26)

where

wn(y) =
einπ/2

a(n+ 1)

√
a2 − y2Un

(y
a

)
(27)

and

τp(z) =
2eipπ

πb(2p+ 1)

√
b2 − (z + h)2U2p

(
z + h

b

)
(28)

and Un(cos θ) = sin((n + 1)θ)/ sin θ are Chebyshev
polynomials of the second kind. Substituting for
PS(y′, z′) in the integral equation, multiplying through
by −(1/π)w∗m(y)τq(z) and integrating over −a < y <
a, −h < z < −h + b results in the following system of
linear equations

2N+1∑
n=0

P∑
p=0

αnpMnpmq = Dm(β)Gq0 (29)

for m = 0, ..., 2N + 1 and q = 0, ..., P , where

Mnpmq =

∞∑
r=0

GprGqrK
(r)
nm (30)

with

K(r)
nm =

1

4

∫ ∞
−∞

λr(l, kr)

l2
Jn+1(al)Jm+1(al) dl (31)

and

Gpr =

{
N
−1/2
r J2p+1(krb)/krh for r ≥ 1

(−1)pN
−1/2
0 I2p+1(kb)/kh for r = 0

(32)

and

Dm(β) =

{
−icotβJm+1(ka sinβ) if β 6= 0

− 1
2 ikaδm0 if β = 0.

(33)

The integrals which determine K
(r)
nm vanish when n+m

is odd, a rendundancy which allows us to reduce our
consideration to elements for which n + m is even. In
order to ensure rapid convergence we use an integral re-
sult involving products of Bessel functions (Gradshteyn
& Ryzhik (1981) §6.538(2)) to gain an integrand which

decays like O
(

(ka)
2
/l4
)

. Ultimately (29) then reduces

to a coupled pair of systems which may be solved for
the unknown expansion coefficients αnp.

The exciting torque on the flap may be expressed in
terms of the Galerkin expansion coefficients as

FS =
1

2
iωρah2π

P∑
p=0

α0pĝp (34)

where

ĝp = −
∫ 0

−h
τp(z)u(z)dz, (35)

an integral which may be expressed in closed form.

3.2 The radiation problem

Applying the same solution method to the radiation
problem, this time making the approximation

PR(y, z) ' ah
2N+1∑
n=0

P∑
p=0

βnpwn(y)τp(z) (36)

for the unknown pressure difference across the flap, re-
sults in the following system of linear equations

2N+1∑
n=0

P∑
p=0

βnpMnpmq = Emĝq (37)

for m = 0, ..., 2N + 1 and q = 0, ..., P . Here Mnpmq is
defined identically to before,

Em =
1

2
δm0 (38)

and ĝq is given in (35).
More rapid convergence of the integrals defining

K
(r)
nm may be achieved as before. Ultimately, having

solved for the unknown expansion coefficients βnp, we
find that the radiation torque is given by

FR = −1

2
iωρa2h3π

P∑
p=0

β0pĝp. (39)
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Figure 2: Capture factors plotted as a function of wave period T (s) for flaps of various lengths and heights in
water of fixed depth h = 12m. The hinge height is fixed at c = 0.2h and the power take-off at λ = 8. The rows
show results for b/h = 0.9, 0.8 and 0.6 respectively, moving down the page, whilst the columns show results for

a/h = 0.5, 1.0 and 2.0, from left to right. The dotted, dashed and solid curves show l̂, l̂opt and l̂max respectively.

4. Results

Figure 2 shows the actual, optimum and maximum
capture factors for a range of flap lengths and pro-
portions of the depth taken up by the device. The
results appear to be best when b/h = 0.9 and the
top of the flap is nearest to the surface. The theo-
retical maximum, which forms an upper bound, is at
its highest when a/h = 0.5 and the flap is short. How-
ever, this also corresponds to a narrower resonant peak
than that seen for longer devices. Whilst an improve-
ment in the actual capture factors over those plotted
may be achieved through optimal tuning, this unfor-
tunate combination of characteristics leads to a nar-
row peak and actual capture factors being limited to
a mean value of about 0.3. By comparison, when op-
timally configured, the results for a surface piercing
device are close to 0.7 for a broad range of periods
(Noad & Porter, 2015). It is not obvious that such a
deterioration in performance should be seen as a result
of complete submersion. Indeed, high capture factors
are maintained for some devices and this is the case for
the fully submerged device of Crowley, Porter & Evans
(2014) for example.
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