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initial bubble centre, one has atmP P gh   , where 

atmP  is the atmospheric pressure. lP  is the local fluid 

pressure on the surface, one has l gP P     when 

considering the surface tension, where    is the surface 
tension coefficient,   is the local surface curvature, 

and bgP P  on the bubble surface, or atmgP P  on the 

free surface.   
It is assumed that the gas inside the bubble satisfies an 

isentropic law. Thus the pressure bP  inside the bubble 

is related to the volume V through the following 
equation (Lamb, 1975): 

0 0( )/bP P V V  ,                       (4) 

where 0P   and 0V   are respectively the initial gas 

pressure and volume when the bubble is generated,    is 
the ratio of specific heat of gas. This state equation is 
applicable up to the moment of bubble breaking up, after 
which the bubble pressure is just taken as the 
atmospheric pressure b atmP P . 

Just before the rupture of the bubble, when the water 
layer between the bubble surface and the free surface 
becomes very thin, the element sizes used must be 
comparable to the thickness of the liquid layer. However, 
the element size cannot be reduced continuously 
indefinitely, which is one of the main reasons for the 
difficulty in analysing the micro details of extremely thin 
water layer. One way forward is to assume the water 
layer will break up when this is sufficiently thin (Ni et al., 
2013). Here it is assumed that when the smallest distance 
between the nodes on the bubble surface and on the free 
surface is less than a critical value 1cs , the bubble will 

open up at this point at the next time step. Also the 
bubble surface near this point with its distance to the free 
surface is smaller than another critical distance 

2 1c cs s    will open up. In this way 1cs  will decide 

the moment of bubble bursting and 2cs  will decide the 

size of the bubble surface being opened up. 

 
(a) Before bubble breaking (b) After bubble breaking 

Fig. 2 Sketch of numerical procedure for a bubble 
bursting through the free surface 

For the axisymmetric case considered here, it is 
observed during the simulation that the node on the 
bubble with the shortest distance to the free surface is its 
top point, as shown in Fig.2. The distance between the 
nodes on the bubble surface and on the free surface with 

0x   is firstly defined as 1s . When 1 1cs s   , the 

water layer is regarded to be sufficiently thin and the 
bubble will burst in the next time step. To decide the size 
of the opening, we define a line l through point M

 
on 

the bubble surface along its normal direction. The line 
intersects with the free surface at M  , which is located 
in the element with nodes N and N+1. Variables such as 
velocity potential on M   are obtained by interpolation 
from nodes N and N+1. When the distance between 
points M and M  2 2cs s    the water layer will be 

just cut there in the next time step, as shown in Fig.2(b). 
After the bubble is opened up, the point of intersection 
between the bubble surface and free surface is marked as 
H, whose location and velocity potential are taken as the 
average of those at points M  and M  .  

In the subsequent calculation, care must be taken at 
the intersection point H, because the normal derivatives 

1n  and 2n  from the both sides of the sharp corner of 

H are different. When calculating the corresponding 
coefficient in the matrix at the intersection, the integral 
can be split into two parts: one from the integration over 
the left side surface and the other from the right side 
surface. However, there exists one more unknown in this 
case, and one extra condition needs to be found before 
solving the matrix equation.  

Fig. 3 Numerical treatment on the sharp corner 
This is provided from a numerical scheme shown in 

Fig.3. Assume the angle between the two segments at the 
sharp corner is  . Bisect the angle   by using a line k. 
Draw a line m perpendicular to k with the intersection 
point I, whose distance to point H is ds  which is quite 

small, and line m will intersect the two segments at aI  

and bI  respectively. Assume the potentials at these 

points are a  and b  respectively. One can get the 

derivative ( ) ( ) /
b aI I b a bas     , where bas  is the 

distance between the points aI  and bI . The weighted 

average of projections along the line m of normal 
derivatives 1n  and 2n , as well as tangential 

derivatives 1  and 2  should be equal to ( )b aI I . 

This gives a link between 1n  and 2n , which can be 

used an extra condition for the matrix equation. Then the 
total velocity ( ,r z  ) at H can be obtained by the 

weighted average of those on the two sides of the corner, 
which is used to update the potential and the free surface 
shape. The calculation is then allowed to continue.  
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Fig.5 The time-history of the vertical coordinate and 
velocity of point A 

Fig. 4 provides the pressure contours and velocity 
vectors near the bubble and free surface as well as the 
evolution of the bubble and free surface and Fig.5 gives 
the variation of the vertical coordinate and the velocity of 
point A, which is the lowest point initially on the bubble 
surface as shown in Fig.1. Initially the gradient of the 
pressure at the top of the bubble is higher than that at the 
bottom of the bubble because of the difference in the 
hydrostatic pressure. Thus the induced radial velocity at 
the top of the bubble is larger due to a larger initial 
acceleration, as shown in Fig.4(a). As the bubble expands, 
its top moves towards the free surface, while its bottom 
or point A moves downwards as shown in Fig.5. The 
pressure inside the bubble then reduces gradually. 
Fig.4(b) presents the surfaces right before bubble 

bursting and it is found that at this time step / 1.01
b atm

P P  . 

The water layer is removed in the next time step, and the 
bubble is opened up as shown in Fig.4(c). After this 

moment t  0.652, the pressure at point A becomes atm
P . 

This creates a larger local pressure gradient shown in 
Fig.4(c), which leads to a larger acceleration, as shown in 
Fig.5. Due to momentum point A still goes downwards. 
It continues until it reaches the first bottom at t  2.584. 
Due to the large hydrostatic pressure at lower position, 
point A then moves up with rapidly rising velocity. The 
velocity reaches a peak and then it slows down and 
becomes zero at t  17.063 when point A reaches its 
first peak, as shown in Fig.5. A large hump of the free 
surface around point A is formed, as shown in Fig.4(e), 
and much of the kinetic energy of fluid is converted into 
the potential energy. It can also be seen in Fig.4(e) that 
the hydrodynamic pressure inside the hump is almost 

atm
P . This means that gradient of the pressure is near zero. 

From the momentum equation, one can infer that the 
vertical acceleration of the fluid particle is –g. This 
coincides well with what has been observed in Fig.5, in 
which there is a section with a constant acceleration –g 
during 6.84 26.66t  . The elevated free surface is 
pulled down by the gravity as the time progresses. Point 
A reaches the bottom second time at t  31.629 as 
shown in Fig.5. Fig.4(g) gives the surface shape at this 
moment. The location of point A is not as low as that of 

the previous trough. The deformation of the free surface 
becomes evident over a larger area, which indicates 
disturbance or generated wave is propagating outwards. 
Almost right after point A reaches the second trough, the 
surrounding water starts rushing towards the centre, 
leading to a higher pressure gradient at point A, as shown 
in the local magnification in Fig.4(h). The acceleration at 
point A becomes extremely large, shown by the nearly 
vertical velocity curve in Fig.5. It leads to a much larger 
velocity peak of 4.34 at t  34.677 before it slows 
down. Consequently, point A reaches a much higher peak. 
However, this is followed only by those points near point 
A or those slightly away from the centre. As a result a 
long and thin jet is formed at t  48.993, as shown in 
Fig.4(i). Then the jet column will be pulled down by the 
gravity and point A will continue to oscillate but with 
gradually reduced peaks as the disturbance propagates 
outwards in the form of the surface wave. 
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