Bursting of a high pressure bubble through a free surface
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Highlights:

®  The bursting of a fully submerged bubble with high internal pressure has been simulated.
® A methodology has been developed to deal with the sharp corner formed when the bubble surface merges with the

free surface after it breaks up.

® Physics of the oscillation of the free surface in the form of a long and thin jet with a much higher second peak after

bubble bursting has been discussed.
1. Introduction

Bubble bursting at the free surface can be found in
biological, chemical and geophysical fields, as well as in
nuclear engineering. It is suggested that it plays an
important role in the natural production of liquid nuclei
at the sea surface (Wu, 2002, Zhang et al., 2012), in the
damages caused by the underwater explosion bubbles
(LeMéhauté & Wang, 1995), as well as the cell damage
observed in bioreactors as a result of bursting bubbles
(Boulton-Stone & Blake, 1993, Boulton-Stone,1995).

In mathematical modelling and numerical simulations,
bubble bursting at the free surface always presents a
huge challenge due to the complex deformation and
rapid motion of the air/liquid interfaces. Especially for a
fully submerged bubble with large initial internal
pressure relative to the ambient pressure, it will rise to
the free surface and burst open very violently. Once it is
open, this is often accompanied by a jet shooting up from
the bottom of the bubble. When the jet reaches its peak
height, it will fall down due to the gravity. The free
surface will then oscillate and a second peak or more
may appear before its deformation diminishes gradually
through wave propagation away to the far field
(Kedrinskii, 1978, LeMéhauté & Wang, 1995, Georgescu
et al., 2002). Longuet-Higgins (1983) adopted a Dirichlet
hyperboloid to model the bursting of an axisymmetric
bubble. Since the deformation of the bubble surface
could be expressed in an analytical form in this problem,
he was able to show when the angle between the
asymptotes of the hyperboloid reduces and approaches to

2arctan~/2 , both the velocity and acceleration at the tip
of the hyperboloid become infinity. Based on this critical
condition, LeMéhauté & Wang (1995) assumed that the
bubble would simply break up at the apex at this very
moment. In this kind of problem, as soon as the bubble
bursts, there arises a major challenge in the numerical
scheme. This is because two different directional normals
exist at the intersection point of the bubble surface and
free surface. This may cause a singularity which would
greatly affect the stability of the numerical procedure if it
is not properly resolved. LeMéhauté & Wang (1995)
assumed that the unknown normal velocity remained
single valued at the sharp corner, the same as other
collocation points on the free surface and it was obtained
by solving boundary integral equation directly. The
tangential velocity was taken as the weighted average of
those on the two elements attached to the corner. The
normal direction at the corner was chosen as that

perpendicular to the tangential velocity direction.
However, mathematically to assume the normal at the
sharp tip of the jet is single valued is not wholly
justifiable. When the tip is an important part of the
solution, this may cause numerical inaccuracy and
instability. Thus a suitable scheme has been developed in
this work to deal with the sharp tip after bubble bursting.
This allows such a highly complex problem to be
modelled successfully. In the present work the whole
process of bubble motion and the free surface motion
will be simulated, including the bubble rising/bursting,
jet development, free surface rising/falling, wave
oscillation and propagation.

2. Mathematical Model and Numerical Method
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Fig. 1 Sketch of the problem with Cartesian and
cylindrical coordinate systems
Fig.1 gives a sketch of the problem, which shows an
initial spherical bubble close to a free surface. The
distance between the initial bubble centre and the
undisturbed free surface is h . When the internal
pressure is spatially constant, the mathematical problem
is axisymmetric about z. The fluid is assumed inviscid
and incompressible, and the fllow is irrotational. Thus, a
velocity potential @ can be introduced, which satisfies
Laplace’s equation
Vo =0, (1)
in the fluid domain.
On the bubble surface and free surface, the fully
nonlinear kinematic and dynamic boundary conditions
can be written as below in the Lagrangian framework:
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where D/Dt is the substantial derivative following a
fluid particle, p is the density of the liquid, g is the

acceleration due to gravity, P_ is the ambient pressure.

Because the origin of the coordinate system is set at the



initial bubble centre, one has P

o

=P, +pgh, where
P.. is the atmospheric pressure. P is the local fluid

atm

pressure on the surface, one has R =F, —ox when

considering the surface tension, where o is the surface
tension coefficient, « is the local surface curvature,

and P, =R on the bubble surface, or B, =P, on the

atm

free surface.
It is assumed that the gas inside the bubble satisfies an
isentropic law. Thus the pressure P, inside the bubble

is related to the volume V through the following
equation (Lamb, 1975):

P=P(V,/V), 4)
where P, and V, are respectively the initial gas

pressure and volume when the bubble is generated, 7 is
the ratio of specific heat of gas. This state equation is
applicable up to the moment of bubble breaking up, after
which the bubble pressure is just taken as the
atmospheric pressure B, =P

atm *

Just before the rupture of the bubble, when the water
layer between the bubble surface and the free surface
becomes very thin, the element sizes used must be
comparable to the thickness of the liquid layer. However,
the element size cannot be reduced continuously
indefinitely, which is one of the main reasons for the
difficulty in analysing the micro details of extremely thin
water layer. One way forward is to assume the water
layer will break up when this is sufficiently thin (Ni et al.,
2013). Here it is assumed that when the smallest distance
between the nodes on the bubble surface and on the free

surface is less than a critical value As_, the bubble will
open up at this point at the next time step. Also the
bubble surface near this point with its distance to the free
surface is smaller than another critical distance
As,, 2 As will open up. In this way AS, will decide
the moment of bubble bursting and As,, will decide the

size of the bubble surface being opened up.
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(a) Before bubble breaking  (b) After bubble breaking
Fig. 2 Sketch of numerical procedure for a bubble
bursting through the free surface

For the axisymmetric case considered here, it is
observed during the simulation that the node on the
bubble with the shortest distance to the free surface is its
top point, as shown in Fig.2. The distance between the
nodes on the bubble surface and on the free surface with

X =0 is firstly defined as AS. When AS <As_, the

water layer is regarded to be sufficiently thin and the
bubble will burst in the next time step. To decide the size
of the opening, we define a line I through point M on
the bubble surface along its normal direction. The line
intersects with the free surface at M’, which is located
in the element with nodes N and N+1. Variables such as
velocity potential on M’ are obtained by interpolation
from nodes N and N+1. When the distance between

points M and M' AS, <AS_, the water layer will be

just cut there in the next time step, as shown in Fig.2(b).
After the bubble is opened up, the point of intersection
between the bubble surface and free surface is marked as
H, whose location and velocity potential are taken as the
average of those at points M and M'.

In the subsequent calculation, care must be taken at
the intersection point H, because the normal derivatives

@, and @, from the both sides of the sharp corner of

H are different. When calculating the corresponding
coefficient in the matrix at the intersection, the integral
can be split into two parts: one from the integration over
the left side surface and the other from the right side
surface. However, there exists one more unknown in this
case, and one extra condition needs to be found before
solving the matrix equation.

N+1

Fig. 3 Numerical treatment on the sharp corner
This is provided from a numerical scheme shown in
Fig.3. Assume the angle between the two segments at the
sharp corner is S . Bisect the angle S by using a line k.

Draw a line m perpendicular to k with the intersection
point I, whose distance to point H is ds which is quite

small, and line m will intersect the two segments at |,

and 1 respectively. Assume the potentials at these

b

points are @, and @, respectively. One can get the

derivative @ is the

(hh12)
distance between the points I, and I, . The weighted
average of projections along the line m of normal
derivatives ®©_ and @ as well as tangential

derivatives @ and ®_, should be equal to ®

=(®, —-®,)/s,, , where s

nl n2 !

(p1y) *
This gives a link between @  and @ ,, which can be
used an extra condition for the matrix equation. Then the
total velocity (®,,®,) at H can be obtained by the

weighted average of those on the two sides of the corner,
which is used to update the potential and the free surface
shape. The calculation is then allowed to continue.



3. Results and discussions
Fr=./P /pgR, as the Froude number, ¢=P /P as the
A case is chosen here to show the jet formations after = PO ° ’

bubble bursting, rapid free surface deformation and wave strength parameter, We=RP /o as the Weber number
propagation. Results for the velocity field and pressure
contour are provided. Nondimensionalisation is applied

based on the initial bubble radius R/, the ambient

and A=h/R as the distance parameter are introduced.
The dimensionless parameters in this case are taken as:
c=20,Fr=25, We=22x10°, 2=17 and r=1.25
pressure P and the density of the fluid o . Thus (Cole, 1965).

©

(a) T ~0.005 (b) t ~0.647 (c) T ~0.652

(d) T ~6.838 (e) t ~17.063 (f) T ~26.454

(g) t ~31.629 (h) t ~34.677 (i) 1 ~48.993

Fig.4 Velocity vectors and pressure contours for¢c =20, Fr =2.5,We =2.2x10° and 1=1.7 . Arrow lengths are

scaled with respect to the maximum instantaneous velocity in each frame.
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Fig.5 The time-history of the vertical coordinate and
velocity of point A

Fig. 4 provides the pressure contours and velocity
vectors near the bubble and free surface as well as the
evolution of the bubble and free surface and Fig.5 gives
the variation of the vertical coordinate and the velocity of
point A, which is the lowest point initially on the bubble
surface as shown in Fig.1. Initially the gradient of the
pressure at the top of the bubble is higher than that at the
bottom of the bubble because of the difference in the
hydrostatic pressure. Thus the induced radial velocity at
the top of the bubble is larger due to a larger initial
acceleration, as shown in Fig.4(a). As the bubble expands,
its top moves towards the free surface, while its bottom
or point A moves downwards as shown in Fig.5. The
pressure inside the bubble then reduces gradually.
Fig.4(b) presents the surfaces right before bubble

bursting and it is found that at this time step R /P _~101.

The water layer is removed in the next time step, and the
bubble is opened up as shown in Fig.4(c). After this

moment t ~0.652, the pressure at point A becomes P, .

This creates a larger local pressure gradient shown in
Fig.4(c), which leads to a larger acceleration, as shown in
Fig.5. Due to momentum point A still goes downwards.
It continues until it reaches the first bottom at T ~ 2.584.
Due to the large hydrostatic pressure at lower position,
point A then moves up with rapidly rising velocity. The
velocity reaches a peak and then it slows down and
becomes zero at t ~17.063 when point A reaches its
first peak, as shown in Fig.5. A large hump of the free
surface around point A is formed, as shown in Fig.4(e),
and much of the kinetic energy of fluid is converted into
the potential energy. It can also be seen in Fig.4(e) that
the hydrodynamic pressure inside the hump is almost
P... This means that gradient of the pressure is near zero.
From the momentum equation, one can infer that the
vertical acceleration of the fluid particle is —g. This
coincides well with what has been observed in Fig.5, in
which there is a section with a constant acceleration —g
during 6.84 <t <26.66 . The elevated free surface is
pulled down by the gravity as the time progresses. Point
A reaches the bottom second time at t ~31.629 as
shown in Fig.5. Fig.4(g) gives the surface shape at this
moment. The location of point A is not as low as that of
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the previous trough. The deformation of the free surface

becomes evident over a larger area, which indicates

disturbance or generated wave is propagating outwards.

Almost right after point A reaches the second trough, the

surrounding water starts rushing towards the centre,

leading to a higher pressure gradient at point A, as shown
in the local magnification in Fig.4(h). The acceleration at
point A becomes extremely large, shown by the nearly
vertical velocity curve in Fig.5. It leads to a much larger
velocity peak of 4.34 at t ~ 34.677 before it slows
down. Consequently, point A reaches a much higher peak.

However, this is followed only by those points near point

A or those slightly away from the centre. As a result a

long and thin jet is formed at t ~48.993, as shown in

Fig.4(i). Then the jet column will be pulled down by the

gravity and point A will continue to oscillate but with

gradually reduced peaks as the disturbance propagates
outwards in the form of the surface wave.
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