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Highlights:

e Foldy-type methods are developed to study the title
problem with equally spaced cylinders around a ring.

e Explicit solutions are obtained by exploiting the cir-
culant structure implied by the special geometry.

1. Introduction

It is 25 years since the publication of “Linton & Evans”
[1] on “The interaction of waves with arrays of vertical
circular cylinders”; it is their most cited joint work.
The paper describes an exact method in which sep-
aration of variables and addition theorems are com-
bined, leading to an infinite system of linear algebraic
equations. The method itself is much older, and goes
back to a paper by Zaviska from 1913. It has been
used in many contexts, and extended in many direc-
tions; for discussion and many references, see [2, Chap-
ter 4]. Apart from using the basic method for water-
wave problems, Linton & Evans [1] also showed that
the computation of the pressure near, or on, any one
cylinder could be simplified considerably.

In this paper, we are interested in the scattering of
an incident plane wave by N identical vertical circular
cylinders arranged in a particular way: in a horizontal
plane (plan view), there are N circles (radius a) with
their centres located on, and equally spaced around, a
larger circle (radius b). We call this geometrical con-
figuration a ring or a cage.

Of course, the Linton-Evans method can be, and
has been, applied to scattering by a ring of cylinders.
See, for example, [3, 4, 5]. However, we are especially
interested when N is large, so that we have many small
circles around the ring with small gaps between them.

Intuitively, we expect that, in the limit (when there
are no gaps), we should approach the solution for scat-
tering by a single large cylinder (with cross-section of
radius b). Can this be shown, and, if so, how fast is
the limit achieved?

The problem we have described is reminiscent of
a problem in electrostatics, a Faraday cage. Thus, a
metal enclosure protects its inhabitants from external
electrical discharges, as first demonstrated by Michael
Faraday in 1836. If the metal has small holes or gaps,
protection is no longer perfect.

In a recent paper [6], we gave an analysis of such
problems, for both electrostatics (Laplace’s equation)

and acoustics (Helmholtz equation); the latter is of
most relevance here. The cylinders comprising the
wires in the cage were assumed to be small, both ge-
ometrically (e < b) and acoustically (ka < 1, where
27 /k is the incident wavelength). For the scattering
itself, we used a much simplified version of Linton—
Evans, one in which the scattering by each circular
cylinder is represented by a single term (proportional
to Hy(kr), see below) instead of the usual infinite
separation-of-variables series. This leads to Foldy’s
method [7], [2, §8.3], which takes account of all the mul-
tiple scattering effects. The result is an N x N linear
algebraic system. This reduction works for N scatter-
ers at more-or-less arbitrary locations. However, for
a ring of equally-spaced identical scatterers, the ma-
trix occurring has a special structure: it is a circulant
matrix. This means that it can be inverted explicitly,
using a discrete Fourier transform, and then the be-
haviour of the solution as N grows can be analysed. It
turns out that the expected limit is achieved but the
limit is approached slowly, as N ! log N.

So far, we have not mentioned the boundary con-
dition on each cylinder. The exact Linton-Evans ap-
proach can accommodate any choice, such as a Dirich-
let condition (pressure or potential specified, “sound-
soft” in acoustics) or a Neumann condition (normal
velocity specified, “sound-hard” in acoustics). In the
context of water waves, the usual case is the Neumann
condition, as imposed in [1].

For the simplified Foldy-type analysis described
above, the underlying assumption is that each cylin-
der scatters isotropically: note the presence of Hg(kr)
with no dependence on the polar angle. This is entirely
appropriate for Dirichlet problems because we know
that small (ka < 1) sound-soft circles really do scat-
ter like a monopole. On the other hand, sound-hard
circles do not scatter isotropically: both monopole and
dipole contributions are equally important and must
be retained. The dipole gives a directional dependence
to the waves scattered by one circle, and this must be
incorporated into the calculation of the multiply scat-
tered waves when there are N circles.

2. Basic formulation

A plane wave is incident upon N vertical cylinders in
water of depth H. As usual, we factor out the depth de-
pendence and write the velocity potential for the scat-



tered waves as
Re{u(z,y) coshk(H — z) e}

where z = 0 is the free surface, z = H is the flat bottom
and k is the positive real solution of w? = gktanh kH.
Denote the cross-section of the jth cylinder in the xy-
plane by C;; it is centred at r;. Then u satisfies (VZ +
k*)u = 0 outside all the C;, together with a radiation
condition and a boundary condition on each C;.

3. Basic Foldy approach

Foldy’s method starts by assuming isotropic scattering.
This means that, near C;, the scattered field at r is
approximated by

AjG(r - rj)’
where A; is an unknown amplitude, G(r) = Ho(k|r|) is

the free-space Green’s function and H,(w) = H,gl)(w)
is a Hankel function. The total field is represented as

N
u(T) = Uine(T) + Z A;G(r —7j),

j=1

(1)

where we will take Uinc(7) = Uine (7, y) = e*@,
The field incident on C, in the presence of all the
other scatterers is

up(r) =u(r) — Ap,G(r — ry)

N
= Uine(r) + 3 A;G(r —1;). (2)
j=1
j#n
This “incident” field is scattered by C,. We character-
ize this process by

(3)

This makes the strength of the scattered wave from C,,
Ay, proportional to the field acting on it, u,(r,). The
parameter g (Foldy’s “scattering coefficient”) can be
chosen as g = —[Jo(ka)]/[Ho(ka)], where J,, is a Bessel
function and each C; has radius a; if the scatterers were
different, we would have written g, in (3).

Finally, evaluating (2) at r, gives, after using (3),

An = gUn (rn) .

N
1
gAn = Uinc(rn) + Z Aj G(Tn - rj)?

Jj=1
J#n

(4)

forn=1,2,...,N. This is a linear N x N system for
A;. Then the total field is given by (1).

4. Application to a ring of soft cylinders

Here, we summarise the results from [6]. There are
N small sound-soft circles arranged so that their cen-
tres (at r;) are equally spaced around a larger circle of

radius b, centred at the origin. Let h = 27/N be the
angular spacing between adjacent scatterers. Then, us-
ing plane polar coordinates, r and 0, r; is at r = b,
0 = 0; = jh. The distance between the jth and nth
scatterers is

[rn = 75| = 2b|sin ([n — jlm /N[ ()

Then the N x N Foldy system (4) simplifies to

N
ZK”—jAj:fm n=12...,N,

Jj=1

(6)

where f, = —uinc(Tn), Ko = —g_la

j#O0mod N (7)
and K is N-periodic: K mn = Kj, m = £1,£2,....

Richmond [8] and Wilson [9] gave numerical solu-
tions of (6). Much later, Vescovo [10] noticed that
the system matrix in (6) is a circulant matrix, which
means that (6) can be solved explicitly using the dis-
crete Fourier transform. Thus, let w = e>™/N. Multi-
ply (6) by @w™", sum over n and use the N-periodicity
of K,,. This gives

K; = Ho(2kb] sin (j/N)),

A~m = fm/f(m7 (8)
where

_ N . 1 .

Ap =) Aj@™, A, = ~ > A, (9)
j=1 j=1

~ N . ~ N .

fn =Y _fi@™, Kp=)Y Kjo™. (10)
j=1 j=1

Finally, invert the discrete Fourier transform of {4;},
{A,,}, using the second of (9).

Having determined A,, we can calculate the field
everywhere, using (1). In addition, we can investigate
analytically what happens as N grows.

Thus, for uiye = €#%, we obtain
N
fm — _ E elkbcosgh elm]h.
=1

Write this formula (suggestively) as

N 1

fﬁm =hY_f(jh) with f(0)=——e

ikb cos Qeime
2

Jj=1

We recognise the sum. It is what we would have ob-
tained if we had used the repeated trapezium rule to
compute fozﬂ f(0)do, noting that f is 27-periodic. As
f is also very smooth, we know that the convergence is
exponentially fast. Hence, evaluating the integral gives

N7 f ~ —i™J,(kb) as N —oo.  (11)



This rapid convergence is encouraging, but the be-
haviour of K, is quite different. From (7) and (10),

N-1
+ v
Jj=1

(12)

Q\H

where

v() = ™Y Hy(2kb | sin (6/2)))

is 2m-periodic but has log singularities at 6 = 0 and § =
27r. The sum in (12) looks like the trapezoidal rule in
which the endpoint contributions have been “ignored”;
the properties of such sums have been analysed by Sidi
[11]. Using his results, we find that

1 - 1 1

Ky~ —
N 2T

/%v(Q)dG—i—mlo N
Ng 0 mN &

as N — oo. The integral can be evaluated. Eventually,
after combining with (8) and (11), we find that
A, = —i"/H,(kb)+O(N~tlog N) as N — oco. (13)
The leading approximation can be used to confirm
our expectations. For example, the far-field pattern
of the ring approaches that for scattering by a sound-
soft circle of radius b [2, eqn (4.10)], but this limit is
approached very slowly. Similarly, the total field at the
origin is O(N~!log N) as N — oo.

4. Extended Foldy approach

Rigid (sound-hard) scatterers always induce a dipole
field. Foldy’s method can be generalized to cover these
situations [2, §8.3.3]. Thus, suppose that, near the jth
scatterer, the scattered field is given by

AjG(r —m;) +qj-g(r —ry), (14)
where A; is an amplitude, g; is a vector,
1 7 d
g(r):—%grad(}(r):—% EG( r) =7 Hy(kr),

with # = 7/r and r = |r|. Each component of g is an
outgoing solution of the Helmholtz equation.

The first term in (14) is a source at r;; the strength
of the source (given by A;) is unknown. The second
term is a dipole at r;; the direction and strength of
the dipole (given by g;) are unknown. The basic Foldy
method assumes that q; = 0. We remark that the
approximation (14) was used successfully in [12, Ap-
pendix A] for scattering by an infinite grating of sound-
hard circular cylinders.

For more detail, define polar coordinates R; and ©;
at rj, r =r; + R;j(i cos®; +j sin©;), where 1 and j
are unit vectors in the x and y directions, respectively.
Then (14) becomes
A;jHo(kR;) +{(q; -

i)cos©; + (g; -§)sin©; } Hy (kR;).

Next, we represent the total field as

N
u(r) = tine(r)+ > _{A;G(r—r;)+q;-g(r—r;)}. (15)
j=1
The field incident on C,, in the presence of all the
other scatterers is

un(T‘)E’U,( )_A G( - )_qn'g(r_rn) (16)
= Uino(r) + Z{A G(r—rj)+q;-g(r — 7))}
J#n

This “incident” field is scattered by C,,. We character-
ize this process by

and qn = Qvn(Tn)a

A, = gun (Tn)

where

v, (r) = k 'grad u,. (17)
The quantity ¢ is a scalar whereas Q is a 2 X 2 matrix.
Thus, A, is proportional to the value of the exciting
field at r,,, whereas v,, is related to the gradient of the
exciting field at 7.

Low-frequency asymptotics for scattering by one
sound-hard circle lead to good choices for g and Q.
Thus

Ji(ka) T 9
=— ~ —(k = —2¢1
where I is the 2 x 2 identity matrix.

Evaluating (16) at 7, gives

N
;An - uinc(rn) + Z {AJG(RTL]) +q] g(an)}7 (18)

j=1
Jj#n
where R,,; =, —r;. Also, from (16) and (17),

V(1) = Vine(T) (19)

+ Z{_Aj g(r

j=
J#n

;) + kK 'gradg; - g(r — )]},

where v (1) = k~'grad uiye. Direct calculation gives
(kRpj) ™ Hy(kRyj) @j — Rnj(q; - Roj)Ha(kRnj)

for k~'grad (g, - g(r —r;)] at r = r,, where R,; =
|Rn]‘ and an = Rn]/an
at r,, we obtain

Hi(kR,;)
Q q’ﬂ - Umc Tn + { ! q
Z k an J

Hence, evaluating (19)

J;ﬁn
— Roy(a; - Boy)Ha(kRy) — Ajg<an>}. (20)

Equations (18) and (20) hold forn =1,2,..., N. They
give a system of linear algebraic equations for A, and
the two components of q,,. For N scatterers, there are
3N equations for the 3N scalar unknowns.



5. Application to a ring of hard cylinders

We define the geometry as in §3. It is convenient to
write g; in terms of its radial and tangential compo-

nents with respect to the ring. Let 9j =jcosf;—isinb;
be a unit tangent vector, so that 7; - 6; = 0. Write

q; = Bj#; + C,0;,

so that the 3N unknowns are A;, B; and Cj, j =
1,2,...,N. We have

b7'q; - Ruj = (Bj#j + Ci0;) - (7 — ;)
= —(2b*) 'R}, B; + C;sinf,;,
where we have used (5) and we have defined
Onj =60, —0;, =(n—7jh.
Hence
;- Rnj = —(2b) ' Ry;Bj + bR, C sin ;.

This will be used in (18) and (20). We will also form
the inner product of (20) with #,, and with —,,. Thus,
we require

T -qj = Bjcosf,; + C;sinb,;,
én -q; = —Bjsinb,; + C; cos 0,;,
P+ Ry = (20) ' Ry,

0, R,; = bR, sinf,;.

Assembling all the pieces, we obtain the system
N
> Knjx;=f,, n=12... N, (21)
j=1

where X; = (Aj, Bj, Cj)T,
fj = (_uinc(rn)a —Fp vinc(rn)a én "Uinc('r'n))T

and K; is a symmetric 3 x 3 matrix. In detail,

—g! 0 0
Ko=Ky=| 0 (29" 0
0 0 (297"
and, for 7 # 0 mod N,
K1 Ko Kis
K;=| Ki2 Kz Ko |,
Ki3 Koz Kss

with entries as follows:
K1 = Hy, K2 =—(2b)"'R;H;,
K3 = bR; 'Hy sin6;,
H R2
Koy = —1 cos0j + Hy—2

kR; 4p2°
H 1
K23:k7‘R1jSin0j—§ 281110]',
H b
K33 = 7]{:7Rj COS@j + HQRf‘? SlIl2 9]‘.

All the Hankel functions have argument kR; with
R; = 2b|sin(jn/N)|. Evidently, K, is N-periodic:
Kj+mN = Kj, m = :|:1, :|:27 PPN

The system (21) gives 3N equations for 3N un-
knowns. Application of the discrete Fourier transform
breaks the system into IV 3 x 3 systems, one for each x;.

6. Discussion

This is a work in progress. The current intention is to
develop the approach outlined in §5 so as to analyse
the effects of letting N grow. Omne question is: how
well does a ring of small vertical cylinders shield the
interior of the ring? We hope to present results in this
direction at the Workshop.
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