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Highlights:
In this work we have deduced an infinite system of quadratic equations with respect to the Stokes coefficients which

define the periodic progressive waves in water of finite depth. The system has a compact form and has been derived
by means of a new variational equation for steady periodic flows above a level bottom. By solving the system we have
constructed an analytical ten-termed expansion in the amplitude for the wave resistance of a two-dimensional body that
creates the waves. The coefficients of the expansion depend only on the mean depth of the waves. The obtained expansion
has been compared with Kelvin’s one-termed formula and with an accurate numerical solution.

1 Introduction
In the scientific literature there is a considerable num-
ber of works devoted to finding the Stokes coefficient
which define the periodic progressive waves in water of
finite depth. The first computer algorithm has been de-
veloped by Schwartz (1974). As in the initial work by
Stokes (1880), Schwartz has used the boundary condition
of constant pressure at the free surface and obtained a cu-
bic system of equations with respect to the Stokes coeffi-
cients. Longuet-Higgins (1978) has demonstrated that af-
ter some transformations the cubic system can be reduced
to a quadratic one. In this work we have derives a simple
variational equation for steady periodic flows above a level
bottom which is especially convenient for studying steady
periodic gravity waves in water of finite depth. The equa-
tion leads to a very compact system of quadratic equations
with respect to the Stokes coefficients. We have developed
an effective algorithm of computing the coefficients in the
form of a series in powers of the wave amplitude. The
exact formula for the wave resistance Rw derived in Mak-
lakov & Petrov (2014) allows us to deduce new analytical
formulae for Rw.

2 Variational equations for steady
periodic flows and gravity waves

Consider a steady flow of an ideal fluid bounded by a
λ-periodic line lz from above and by a horizontal bottom
y = 0 from below. Under the λ-periodicity we understand
the property z = x+ iy ∈ lz ⇒ z + λ ∈ lz . The complex
potential of the flow w = ϕ + iψ satisfies the following
boundary conditions

Imw = ψ = Q for z ∈ lz,
Imw = ψ = 0 for y = 0,

(1)

where Q is the volume flux. In the flow domain the com-
plex conjugate velocity dw/dz is a λ-periodic function,

but the complex potential w(z) increases by an increment
C (by a circulation) on every period:

w(z + λ)− w(z) = C.

For a fixed upper boundary lz the flow is defined
uniquely by specifying either the volume flux Q, in this
case the increment of the potential C should be found in
solving, or by specifying C to determine Q.

In the flow domain consider one period, shown in
Fig. 1(a). Let s be the arc abscissa of the line lz , reckoned
from a certain point L.

Proposition. Consider a steady λ-periodic flow bounded
from above by the line lz with the velocity distribution v(s)
on lz . Assume that the flow flux is Q and the circulation
is C. Let the boundary lz be varied by shifting each of its
points on the distance δn(s) in the direction of the normal
in so manner that the new line l∗z be also λ-periodic. Let
for the new λ-periodic flow, bounded from above by the
line l∗z , the flux and circulation be Q + δQ and C + δC,
respectively (fig. 1a). Then the following variational equa-
tion holds ∫

LS

v2(s)δn(s)ds = CδQ−QδC, (2)

where the curve LS is any period of the line lz .

The prove of the proposition is based on the Cauchy
theorem for analytic functions.

Consider a system of periodic gravity waves in the
wave-fixed reference frame in which the flow is steady.
Then the parameter of periodicity λ is the wavelength. Let
the density of the fluid be ρ. As in Longuet-Higgins (1975)
we non-dimensionalize all wave parameters by choosing
λ/(2π),

√
gλ/(2π) and ρ as the scales for length, veloc-

ity and density, respectively. In what follows all physi-
cal quantities will be dimensionless with accordance to
the chosen scales. Now the dimensionless wavelength
is 2π, in the boundary conditions (1) and in the varia-
tional equation (2) the parameters Q and C are scaled by√
gλ3/(2π)3.



For the periodic wave problem we should add to the
boundary conditions (1) the Bernoulli equation on the un-
known free surface lz: v2

2 +y = R, where R is the dimen-
sionless Bernoulli constant (total head).

It is easy to demonstrate that for any λ–periodic line
and any differentiable function P (y) the following varia-
tional equation holds

δ

∫
LS

P (y)dx =

∫
LS

P ′(y)δn(s)ds, (3)

where LS is one period of the line.
Consider now one wave period located between neigh-

boring wave crests (Fig. 1 a). On the free surface the
boundary condition v2 = 2R − 2y is satisfied. Let us
vary the free-surface by a function δn(s). Then by virtue
of (3) ∫

LS

v2(s)δn(s)ds =

∫
LS

(2R− 2y)δn(s)ds

= δ

∫
LS

(2Ry − y2)dx = 2πδM [η],

(4)

where the functional

M [η] = 2R d−D2

depends only on the shape of the free surface with the
equation y = η(x), d and D are the mean and root-mean-
square depths, respectively:

d =
1

2π

∫ x+2π

x

η(x)dx, D2 =
1

2π

∫ x+2π

x

η2(x)dx.

It follows from (2) that

2π δM [η] = CδQ−QδC = C2δ

(
Q

C

)
. (5)

For the wave period the domain of the complex poten-
tial w = φ+ iψ is a rectangle, shown in Fig. 1 b. We map
conformally this rectangle onto an annulus (see Fig. 1 c)
with an outer radius of unity and inner radius of

r0 = exp

(
−2πQ

C

)
. (6)

A usual assumption (see e.g. Longuet-Higgins, 1975;
Cokelet, 1977) in the theory of nonlinear periodic waves is
that in the bottom-fixed reference frame the waves propa-
gate with the velocity ca, equal to the average fluid veloc-
ity at any horizontal level completely within the fluid in
the wave-fixed reference frame (in steady flow). That is
ca = C

2π . Now the equation (5) can be rewritten as

δM [η] = −c2a
δr0
r0
, (7)

which is just the variational equation for steady periodic
waves.

3 System of quadratic equations for
the Stokes coefficients

We shall seek the conformal mapping of the annulus
(Fig. 1 c) in the parametric ζ-plain onto the flow domain
of the one wave period in the form

z(ζ) = 2π + i log ζ + iy0 + i
∞∑

n=1

yn

(
ζn − r2n0

ζn

)
. (8)

The representation (8), being a variant of the Stokes
method (see Stokes, 1880), is often used in the nonlinear
wave theory (see e.g. Schwartz, 1974). By virtue of sym-
metry the Stokes coefficients yn (n = 0, 1, 2 . . . ) are real.
Because on the bottom Im z = 0, we find from (8) that
y0 = − log r0. The parametric equations of the free sur-
face are

xs(γ) = 2π − γ −
∞∑

n=1

αn sinnγ,

ys(γ) = − log r0 +
∞∑

n=1

βn cosnγ,

(9)

where αn = 1+r2n0 , βn = 1−r2n0 , γ is a polar angle in the
ζ-plane. After some algebra it is possible to demonstrate
that

M = (R+log r0) Λ− 1

2
(Λ1+Λ2)− log2 r0−2R log r0,

where

Λ =
∞∑

n=1

nβ2ny
2
n, Λ1 =

∞∑
n=1

β2
ny

2
n,

Λ2 =
∞∑
k=2

yk

k−1∑
n=1

γk−n,n yn yk−n,

(10)

γm,n = mβnβ2m+n + nβmβm+2n.

Now in the variational equation (7) the left-hand side is
a function of the Stokes coefficients yn (n = 1, 2, 3, . . . )
and the parameter r0. Differentiating M with respect to
yn at fixed r0, we come to the following infinite system of
quadratic equations:

(nβ2nK − β2
n) yn =

1

2

n−1∑
n=1

γn−m,m yn−m ym

+
∞∑

m=1

γm,n ym+nym, n = 1, 2, 3, . . . ,

(11)

where
K = 2(R+ log r0). (12)

After finding yn at a fixed r0 we are able to calculate

c2a = −r0
∂M

∂r0
= K −Λ+

r

2

(
∂Λ1

∂r0
+
∂Λ2

∂r0
−K

∂Λ

∂r0

)
.

(13)



We shall seek the coefficients yn and the parameter K
in the form of expansions in powers of the wave ampli-
tude a = (hc − ht)/2, where hc and ht are the heights
of the wave crests and troughs, respectively. The coeffi-
cients of these expansions are functions of the parameter
ε = exp(−2d). Let the highest power of a in these expan-
sions be N , where N is an odd number. Then

K =

(N−1)/2∑
k=0

κ2na
2n +O(aN+1), (14)

yi =

[(N−i)/2]∑
n=0

ai,2na
i+2n + o(aN ), i = 1, 2, . . . , N,

(15)
and because the parameters a and ε are given we should
add to the system (11) two more equations

a =

(N+1)/2∑
n=1

β2n−1y2n−1, r20 = ε exp

(
N∑

n=1

nβ2ny
2
n

)
.

The first equation follows from the second equation in (9),
the latter one follows from the identity

d = Λ/2− log r0. (16)

We have developed an effective algorithm of finding the
coefficients κ2n, ai,2n. The algorithm can be easily pro-
grammed (for example, by the MATHEMATICA package)
and allows one to use exact arithmetics and symbolic com-
putations. After determination the coefficients by making
use of (13) one can calculate

c2a =

(N−1)/2∑
n=0

c2na
2n +O(aN+1), (17)

where c2n are functions of the parameter ε.

4 Analytical formulae for the wave
resistance

Consider a two-dimensional body that moves horizontally
from right to left at constant speed c in a channel of finite
depth h. Assume that in the body frame of reference the
flow is steady. Then the wave train generated by the body
also moves from right to left with the same velocity c. In
the body frame of reference we have far upstream a uni-
form stream with velocity c and far downstream the train
of steady periodic waves (Fig. 2).

Due to the generation of waves the body experiences a
resistance, which we denote by Rw. Maklakov & Petrov
(2014) have deduced an exact analytical formula for Rw:

R = 3V +
1

2
(∆d)2 + (c2 − d)∆d, (18)

where V is the mean potential energy of the wave:

V =
1

4π

∫ x+2π

x

[η(x)−d]2dx =
1

4

(
−Λ2

2
+ Λ1 + Λ2

)
,

(19)

and ∆d = h − d is the defect of levels (the difference
between the undisturbed level far upstream and the mean
level far downstream).

Let us assume that the mean depth d and amplitude a
of the waves are known. By means of equations (10), (15),
(19) it is easy to derive an expansion for the mean poten-
tial energy V . Now to determine Rw by equation (18) one
needs to find the defect of levels ∆d and the speed of the
body c. Because the flux Q and the Bernoulli constant R
far upstream and far downstream of the body are equal we
can write

c(d+∆d) = Q, c2 + 2∆d = 2(R− d).

From equations (6), (12), (16) we deduce that Q = ca(d−
Λ/2), 2(R−d) = K−Λ. This allows us to derive a cubic
equation with respect to ∆d:

(K − Λ− 2∆d)(∆d+ d)2 = c2a (d− Λ/2)
2
.

In this equation the parameters Λ, c2a and K are expressed
by ε and a by formulae (10), (14), (15) and (17). The so-
lution is represented as an expansion in even powers of a
up to the terms of order aN−1. After finding ∆d we deter-
mine c2 = K − Λ− 2∆d. Inserting the found ∆d and c2

in (18), we get the wave resistance in the form

Rw = R2a
2+R4a

4+R6a
6+· · ·+RN−1a

N−1+O(aN+1),
(20)

where the coefficients R2k depends on ε = exp(−2d).
The first coefficient R2 = 1

4

(
1− 2d

sinh 2d

)
coincides with

that at a2 obtained by Kelvin (1887).
The computations of the wave resistance by the Stokes

method have been carried out at N = 21, i. e with the
asymptotic accuracy up to the terms of a20, and all ten
coefficients R2k have been found analytically. But an ana-
lytical representation of the coefficient R6 is already very
cumbersome. For the coefficient R4 we have

R4 = R40 +R41d+R42d
2,

R40 =
11 cosh 2d+ cosh 4d+ 2 cosh 6d− 5

128 sinh5 d (d cosh d− sinh d)
,

R41 =
10 cosh 2d− 118 cosh 4d− 14 cosh 6d− 3 cosh 8d− 19

1024 sinh6 d cosh d (d cosh d− sinh d)
,

R42 =
−7 cosh 2d+ 10 cosh 4d+ cosh 6d+ 5

128 sinh7 d (d cosh d− sinh d)
.

Comparison of the wave resistance obtained by analyt-
ical formulae and by the accurate numerical method of the
paper by Maklakov (2002) is presented on the graphs of
Fig. 3.
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Figure 1: (a) One period. (b) Domain of the complex potential w = φ+ iψ. (c) Parametric ζ-plane.
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Figure 2: Scheme of the steady flow
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Figure 3: Comparison of accurate numerical results with analytical formulae at the depths d
2π = 0.15 (1), 0.2 (2), 0.25 (3)

∞ (4): solid lines, the waves have been computed by the method of the paper by Maklakov (2002); dashed lines, n = 1
(Kelvin’s one-termed formula), dashed lines with long dashes, n = 2; dot-and-dash lines, n = 5; dotted lines, n = 10,
where n is the number of terms in (20).


