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1 Introduction
Last year at the IWWWFB in Osaka Porter et al [1] discussed the phenomenon of cloaking. Among others results
for a stiff plate underneath the free surface was considered. I asked myself the question whether for a flexible plate
underneath the free surface the same phenomenon could be observed. In this presentation we extend the ’mode’ method
as derived for flexible plates at the free surface. It is well known, see for instance Hermans [2], that at certain frequencies
the transmission coefficient may have an absolute value equal to unity |T | = 1. We will check by means of numerical
calculations whether at such a point the phase shift equals zero, hence T = 1. In [2] a small phase shift is present at the
frequency where |T |= 1.
In this abstract we extend the existing ’mode’ method to the submerged flexible plate situation. We first consider a flexible
plate and then a fixed rigid plate.

2 Flexible plate
We consider the two-dimensional interaction of an incident wave with a Very Large Flexible Platform (VLFP) with zero
thickness located at finite depth y = y0. We want to make use of the Green’s theorem as we have done in the case where
the platform is at the free surface.
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Figure 1: configuration

To do so we start with a plate of finite thickness, 2d, as depicted in fig-
ure (1) and later take the limit d → 0. The advantage is that we can make
use of two different forms of the Green’s function for points above or un-
derneath the platform. The fluid is ideal, so we introduce the velocity po-
tential V(x, t) = ∇Φ(x, t), where V(x, t) is the fluid velocity vector. Hence
Φ(x, t)is a solution of the Laplace equation ∆Φ = 0 in the fluid, together
with the linearized kinematic condition, Φy = ṽt , and dynamic condition,
p/ρ =−Φt−gṽ, at the mean water surface y = 0, where ṽ(x, t) denotes the
free surface elevation, and ρ is the density of the water.

The linearized free surface condition outside the platform, y = 0 and x ∈ F , becomes:

∂2Φ

∂t2 +g
∂Φ

∂y
= 0. (1)

We assume that the velocity potential is a time-harmonic wave function, Φ(x, t) = φ(x) e−iωt . The potential of the
undisturbed incident wave is given by:

φ
inc(x) =

gζ∞

iω
cosh(k0(y+h))

cosh(k0h)
exp(ik0x) (2)

where ζ∞ is the wave height in the original coordinate system, ω the frequency, while the wave number k0 is the positive
real solution of the dispersion relation, k0 tanh(k0h) = K, for finite water depth.
A crucial step is the choice of the Green’s function. It is possible to derive the Green’s function G(x,y;ξ,η) by means of
a Fourier transform with respect to the x-coordinate. It has the form:

G−(x,y;ξ,η) =
∫

L ′
1
γ

K sinhγy+ γcoshγy
K coshγh− γsinhγh

coshγ(η+h) eiγ(x−ξ) dγ for y > η (3)

and

G+(x,y;ξ,η) =
∫

L ′
1
γ

K sinhγη+ γcoshγη

K coshγh− γsinhγh
coshγ(y+h) eiγ(x−ξ) dγ for y < η (4)



The Green’s function obeys the free surface boundary condition. The expression for the total potential φ± becomes for
y > y0 +d and for y < y0−d resp.

2πφ
±(x,y) = 2πφ

inc(x,y)−
∫ l

0

(
φ
+(ξ,η)

∂G∓(x,y;ξ,η)

∂η
− ∂φ+(ξ,η)

∂η
G∓(x,y;ξ,η)

)∣∣∣∣
η=y0+d

−
(

φ
−(ξ,η)

∂G∓(x,y;ξ,η)

∂η
− ∂φ−(ξ,η)

∂η
G∓(x,y;ξ,η)

)∣∣∣∣
η=y0−d

dξ.

(5)

where we ignored the contributions of the endpoints.
To describe the vertical deflection ṽ(x, t) of the platform, we apply the isotropic thin-plate theory and use the kinematic
and dynamic condition to arrive at the following equation for φ at y = y0 in the platform area x ∈ P :{

D
∂4

∂x4 −µ
}

∂φ

∂y
= K(φ−−φ

+), (6)

where we used following parameters: K = ω2

g , µ = mω2

ρg , D = D
ρg . Here m denotes the mass per length and D the flexural

rigidity.
To apply the mode expansion we have to expand the potentials φ± and the vertical velocity φy,and finally let d tend to
zero, so we may pursue with this formulation.
However if we take d = 0 and differentiate (5) with respect to y we obtain the same result more directly. At first a hyper-
singular equation does not look tractable. But it turns out that the equation of motion of the plate makes it possible to
expand the vertical velocity at y = y0 only.

2π
∂φ

∂y
= 2π

∂φinc(x,y)
∂y

+
1
K

∫ l

0

∣∣∣∣{(D
∂4

∂ξ4 −µ
)

∂φ

∂η

}
∂2G(x,y;ξ,η)

∂η∂y

∣∣∣∣
η=y0

dξ. (7)

where

∂2G(x,y;ξ,η)

∂η∂y
=

∫
L ′

γ
K coshγy+ γsinhγy
K coshγh− γsinhγh

sinhγ(η+h) eiγ(x−ξ) dγ (8)

We now introduce the expansions for the vertical velocity at the surface of the plate

dφ

dy
=

N+1

∑
n=0

an eiκnx +bn eiκn(l−x) (9)

We now can integrate with respect to ξ in (7) and let y tend to y0. We consider l =+∞ first and add some artificial damping
to make the integrals with respect to ξ converge and work out the integral for y > y0 and take y = y0 afterwards.

∫
∞

0

{(
D

∂4

∂ξ4 −µ
)

∂φ

∂η

}
∂2G(x,y;ξ,η)

∂η∂y
dξ =

a
i
(Dκ

4−µ)
∫

L ′
γ
(K coshγy+ γsinhγy)sinhγ(y0 +h)

(K coshγh− γsinhγh)(γ−κ)
eiγx dγ =

2πa(Dκ
4−µ)

κ
K coshκy+κsinhκy
K coshκh−κsinhκh

sinhκ(y0 +h) eiκx +
N−1

∑
j=0

k j(K coshk jy+ k j sinhk jy)
d
dγ
(K coshγh− γsinhγh)|γ=k j

sinhk j(y0 +h)
k j−κ

eik jx

 .

(10)

If we take the coefficient of exp(iκx) in (7) equal to zero we arrive at the following dispersion relation for κ

κ(Dκ
4−µ)sinhκ(y0 +h) =−K

κsinhκh−K coshκh
κsinhκy0 +K coshκy0

(11)

If we take y0 = 0 we recover the dispersion relation for the plate at the free surface.

κ(Dκ
4−µ+1) tanhκh = K (12)

The terms with exp(ik jx) will give us a set of equations for the unknown coefficients An =
−an
iω and Bn =

−bn
iω determining

the deflection of the finite platform.

w(x) =
N+1

∑
n=0

An eiκnx +Bn eiκn(l−x) (13)



We have 2N equations of the 2N +4 unknowns An and Bn:

N+1

∑
n=0

(Dκ
4
n−µ)

[
An

κn− ki
− Bneiκnl

κn + ki

]
=−δ0i

sinhk0h
sinhk0(y0 +h)

(K2h−K− k2
0h)

Kk0

N+1

∑
n=0

(Dκ
4
n−µ)

[
Aneiκnl

κn + ki
− Bn

κn− ki

]
= 0.

(14)

for i = 0, · · · ,N−1. The conditions at the endpoints of the platform d2
w

dx2 = d3
w

dx3 = 0 result in four equations.
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Figure 2: Deflection for different
values of submergence
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Figure 3: Deflection for different
values of water depth

In figure (2) some results are shown for
the deflection |w|/ζ∞ of the plate with wa-
ter depth h = 20 m. , l = 300 m. , D =
107 m. and λ0 = 2π/K = 60 m. for various
values of submergence y0. In figure (3) we
have chosen a fixed value of submergence
y0 = −5 m. and different values of water
depth.

If we take d = 0 in the expression for φ+ in (5) we obtain the reflection and transmission coefficients.

R =
Kk0 sinh(k0(y0 +h))

(K(1−Kh)+ k2
0h)sinh(k0h

N+1

∑
n=0

(
Dκ

4
n−µ

)[ An

k0 +κn

(
ei(k0+κn)l−1

)
+

Bn

k0−κn

(
eik0l− eiκnl

)]
(15)

and

T =
Kk0 sinh(k0(y0 +h))

(K(1−Kh)+ k2
0h)sinh(k0h)

N+1

∑
n=0

(
Dκ

4
n−µ

)[ An

k0−κn

(
e−i(k0−κn)l−1

)
+

Bn

k0 +κn

(
e−ik0l− eiκnl

)]
+1 (16)
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Figure 4: D = 107 m.
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Figure 5: D = 105 m.

In figure (4) and (5) the reflection and Trans-
mission coefficients are shown for two val-
ues of the flexural rigidity, D = 107 m. and
=105 m. , at water depth h = 20 m. and sub-
mergence of the plate y0 = −5 m. We study
the points where |T | = 1, it is more clear
where |R|= 0, in detail to see whether cloak-
ing occurs in these points. We first notice that
the relation |R|2 + |T |2 = 1 very accurately.

The computations show that in none of these points T = 1 exactly. In some points we find ℜT close to −1 and in the
other points where ℜT is close to +1 the value of ℑT 6= 0.

3 Fixed rigid plate
If we consider a fixed rigid plate at y = y0, thickness d = 0. We notice that in the case of D → ∞ we find from the
dispersion relation for the flexible plate (11) that either sinhσ(y0 + h) = 0 or κsinhκy0 +K coshκy0 = 0, so we expect
that we can use these realtions. To find proper relations for the modes we study the following hyper-singular equation
obtained by means of we differentiation of (5) with respect to y, and take y = y0.

2π
∂φinc(x,y)

∂y
=

∫ l

0

(
φ
+(ξ,η)−φ

−(ξ,η)
) ∂2G(x,y;ξ,η)

∂η∂y
dξ. (17)



This is a hyper-singular integral equation for the potential jump along the plate. We can solve this equation by means of
the mode expansion method by introduction of:

φ
+−φ

− =
N−1

∑
n=0

(
an eiκnx + cn eiκn(l−x)

)
+

N−1

∑
n=0

(
bn eiσnx +dn eiσn(l−x)

)
. (18)

Using (10) it is easy to show that κn and σn are solutions of:

κsinhκy0 +K coshκy0 = 0, sinhσ(y0 +h) = 0. (19)

So the solution consists of a combination of the eigen-modes of the flow above and below the plate resp. as expected.
In [3] we studied the case of a rigid plate at the free surface, in that case only the the second condition of (19) played a
role.
For the 2N coefficients in (18) we obtain, for i = 0, · · · ,2N−1 the following set of equations

N−1

∑
n=0

[
an

κn− ki
− cneiκnl

κn + ki

]
+

N−1

∑
n=0

[
bn

σn− ki
− dneiσnl

σn + ki

]
=−δ0i

sinhk0h
sinhk0(y0 +h)

(K2h+K− k 2
0h)

Kk0

N−1

∑
n=0

[
aneiκnl

κn + ki
− cn

κn− ki

]
+

N−1

∑
n=0

[
bneiσnl

σn + ki
− dn

σn− ki

]
= 0.

(20)

The transmission and reflection coefficients are obtained accordingly.
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In a paper published in 1969 Mei
and Black [5] studied the interac-
tion of waves with fixed docks and
object on the bottom. The figure
shown is copied from that paper.
In the figure next to it the plate is
positioned at the same level as the
top surface of the submerged ob-
ject. The parameter H is the dis-
tance to the bottom.

4 Conclusions
We have extended the ’mode’method to the case of a flexible and fixed plate underneath the free surface. In contrast to
the free surface plate one uses the hyper-singular integral equation for the vertical velocity instead of the equation for
the potential function. The reflection coefficient computed by means of this method does not show frequencies where
cloaking occurs. In [6] it is descibed how to extend the method to the configurations described in [5].
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