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Introduction 
 

The hydroelastic behavior of a flexible circular plate with a concentric hole floating on the free surface is considered. 
The plate has zero thickness and homogeneous characteristics (constant density, constant flexural rigidity). It is also 
assumed that the fluid is the prefect fluid and the flow has irrotational characteristic. Furthermore, the thin plate 
theory is adopted to express the plate deflection. The right-handed coordinate system is introduced with z = 0 the 
undisturbed free surface. The bottom is assumed to be horizontal at z = -h. The incident wave propagates along 
positive x-axis. The basic configuration is shown in Figure 1. 

 
 

Figure 1. Basic configuration 
 

Boundary condition for plate of zero thickness on the free surface 
 

In order to express the boundary condition on the plate-wave interaction region, the kinematic condition and 
dynamic condition have to be considered. To do this, the governing equation of thin plate deflection is used. The 
governing equation is given by 
 

 
2

2
02


  


W

M D W P
t

 (1) 

 

where ( , , )W x y t is the deflection, M is the mass of unit area, D is flexural rigidity, P is the external pressure 

and 0 denotes horizontal Laplace operator expressed as 
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 to fit with the circular plate. The 

dynamic condition on the interaction region is that the pressure is equal to hydrodynamic pressure comes from 
the Bernoulli’s equation. 
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The kinematic condition in this domain states that the normal velocity of the plate is equal to that of water particle. 
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These conditions have two difficulties which are nonlinear and are applied at the unknown position z W . In 
order to transfer the boundary condition from the unknown position to its mean position z = 0, the classical way 
suggested by Stokes is introduced. For the small displacement assumption, we can expand the exact plate 
deflection to the mean position using the Taylor series expansions. 
We can write the dynamic condition: 
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The kinematic condition can be expressed as following: 
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This expression is written up to the second order with respect to and the notation ( )o  is used to represent the 

order higher than Ɛ while ( )O  denotes the order of Ɛ. 

Next step is to seek a solution,  and W, into a perturbation series with respect to wave steepness /  A  
where A is the wave amplitude and  is its length. 
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For monochromatic incident waves, the time dependency can be separated by using the time periodic assumption 
at frequency . The first- and second order velocity potential have the forms. 
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The similar notations are used for the plate deformation W. 
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Because we focused on the high frequency phenomena, the over-bar expression for the steady parts of the second 
order is neglected in this study. 
After inserting these expression into kinematic condition and dynamic condition, we obtain the combined plate-
wave interaction boundary condition and plate deflection in frequency domain at corresponding orders. 
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where the mathematical operators (1)  and (2)  are defined as follows: 
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Solution methodology 
 

In order to solve the problem, the method of matched eigenfunction expansions is used. The eigenfunction expansion 
for the plate problem was introduced by Kim & Ertekin [2] and Malenica & Korobkin [4]. We divide the fluid domain 



into three regions: an outer region defined by   R r , 0 2   , 0  h z , a middle region (plate-wave 

interaction) defined by  a r R , 0 2   , 0  h z  and an inner region defined by 0  r a , 0 2   ,
0  h z . To match the solutions, the continuity of the pressure and normal velocity are introduced at the common 

boundaries. 
Potential decomposition in the inner and the outer regions 

 

The total potential in the inner and outer regions (regions I and III in Figure 1) is divided into the incident and 
perturbation part. The incident potential, up to second order, is well known and can be written as follows: 
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where m  is equal to 1 for m = 0 and 2 for m > 0. 

The perturbation potential, at each order (j) is now decomposed into two parts ߮௉ு
ሺ௝ሻ

 and ߮௉ொ
ሺ௝ሻ which satisfy the 

homogeneous and non-homogeneous free surface boundary conditions respectively: 
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Since the potential I or III,( )j
PH  satisfies the homogeneous free surface boundary condition ( ( ) ( ) / 0     j j

PH PH z ) can be 

found in the form: 
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where the vertical eigenfunction is ( ) ( ) cosh ( ) / cosh j
n n nf z k z h k h  and the eigenvalues nk  are computed by 

using the dispersion relation, tanh  k kh (for the first order:  , second order: 4  ). The dispersion 
relation gives one real root 0k  and infinite number of imaginary roots nk . 

The perturbation potential I or III,( )j
PQ  is chosen to satisfy the homogeneous boundary condition at the vertical 

boundaries of the domains ( ( ) / 0  j
PQ r  at r = a or R) and the non-homogeneous free surface boundary 

condition ( ( ) ( ) ( )/     j j j
PQ PQ Pz Q ). The corresponding solution at the vertical boundaries can be expressed in 

the following form: 
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where the coefficients mnL , mnN  can be deduced by using the Green’s theorem as shown in [3]. 
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Potential decomposition in the plate region 
 

The potential in the plate region (region II in Figure 1) is also decomposed into two part ,( )II j
PH and ,( )II j

PQ where 

the potential ,( )II j
PH  satisfies the homogeneous plate-wave interaction boundary condition 

( (j) (j) ( ) / 0     j
PH PH z ) can be written in the following form: 
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where the vertical eigenfunction is ( ) ( ) cosh ( ) / cosh  j
n n nF z z h h  and the eigenvalues n  are the solution 

of the dispersion relation, 4(1 M/ D/ ( g) ) tanh         h ). This equation gives one real root ( 0 ), 



infinite number of imaginary roots ( n ), and two complex roots ( 1 , 2 ). These two complex roots are related 

to each other as *
2 1    with asterisk denoting the complex conjugate. The complex roots are introduced by 

Evans & Davies [1]. 
Finally, the remaining part of the perturbation potential ,( )II j

PQ , which satisfies the homogeneous boundary 

condition ( ( ) / 0  j
PQ r at r=a, R) and the non-homogeneous boundary condition at the plate interface 

( (j) (j) ( ) /j II
PQ PQ Pz Q      ) can be expressed in the form: 
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where coefficients a
mnM , R

mnM  can be deduced by using the Green’s theorem with the following Green’s 

function: 
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Matching and the final linear system of equations for the unknown coefficients 
 

In order to get the unknown coefficients ( )j
mnA , ( )j

mnB , ( )j
mnC  and ( )j

mnD , we need to truncate the infinite series in the 

expressions for the potentials and after that apply the matching conditions at the vertical boundaries of the different 
domains: 
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Finally, in order to properly close the problem we need to apply the plate end boundary conditions. In the case of 
free ends these conditions should ensure that the bending moment and shear force are zero at the plate ends: 
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The numerical results for the first- and second order deflection of the plate will be presented at the Workshop. 
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