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Highlights

• Theory for ship waves in the presence of a shear flow of uniform vorticity is extended to the case of finite
water depth.

• The presence of a shear flow, at arbitrary angle with the ship’s direction of motion, introduces novel
features such as asymmetric wakes, non-constant Kelvin wake angles and critical ship velocity above
which transverse waves vanish.

• An explicit expression for the critical velocity with both shear and finite depth is derived, together with
limits for the corresponding sector of wave propagation forbidden at supercritical velocities. A subtle
interplay between shear flow and water depth is found.

I. INTRODUCTION

The theory of ship waves dates back to Lord Kelvin,
who showed in 1887 that the angle formed by the
waves in a ship’s wake always forms the same angle,
ϕK = 19◦28′[1]. The theory was developed further, in
particular, by Havelock [2, 3], and is reviewed in the
classical literature[4, 5]. Ship waves, and the Kelvin
angle in particular, have lately received much atten-
tion in the literature [6–13]. Recently, the classical
theory was extended by one of us to include the pres-
ence of a Couette-type shear flow of uniform vorticity
below the surface [14], forming an arbitrary angle with
the ship’s direction of motion.
Several realistic situations involve the presence of

shear flow beneath the water surface; examples in-
clude shallow rivers, sub-surface currents, and when
the water near the surface is set in motion by wind
(e.g. [15]). As a model flow we consider the simplest
shear flow, namely a flow of uniform vorticity (Cou-
ette profile). While somewhat idealised compared to
real flows (note that G.I. Taylor observed this kind of
profile where a bubble curtain surfaces [16]), it allows
reasonably straightforward analysis, and is an impor-
tant stepping stone towards understanding the inter-
action of ship waves with more general shear profiles.
The presence of a shear flow below the surface was

found in Ref. [14] to have a profound influence on
the ship waves, determined mainly by the dimensional
group FrS = V S/g where S is the shear (vorticity),
V is the speed of the ship and g the acceleration of
gravity. It may be interpreted as a “shear Froude
number” based on the length g/S2, and implies, cru-
cially, that even moderate shear becomes important
for fast–moving ships.
In the following we extend the theory to the case

where the water has a finite depth h. While the re-
derivation of the governing equations is only slightly
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FIG. 1. The geometry considered.

complicated by the incorporation of the extra param-
eter, the introduction of a finite depth is by no means
trivial, since the effects of water depth and shear flow
interact with each other.

A particularly interesting point reported in Ref. [14]
is that the presence of the shear flow implies that in
every direction of ship motion except exactly along
the shear current, there exists a critical ship velocity
Vcrit beyond which no transverse waves are produced
by the boat. The physical reason is that the shear
limits the phase velocity of even very long waves, and
that transverse waves, propagating in directions close
to that of the ship’s movement, cannot keep up with a
ship moving faster than the maximum phase velocity.
Exactly the same phenomenon is well known to appear
in the case of ship waves at finite depth [3], where the
phase velocity can never exceed cmax =

√
gh.

II. THEORY

The geometry of the problem is shown in Fig. 1.
A ship travels at velocity V relative to the surface
of the water. We choose the coordinate system so
that the surface velocity is zero, and the basic flow is
U(z) = Sz along the x axis. The water depth is h, the
water density is ρ and we assume incompressible flow.



We let β be the angle between the ship’s motion and
the shear flow as shown in Fig. 1. The ship perturbs
the basic flow so that the velocity and pressure field
become

v = [U(z) + û, v̂, ŵ]; p = −ρgz + p̂. (1)

We work to linear order in these perturbations. Not-
ing that ship waves must appear stationary as seen
from the moving ship, the perturbed quantities can
depend on time only through the combination ξ =
r⊥ −Vt where r⊥ = (x, y). We therefore subject all
physical quantities to the plane Fourier transform

û(ξ, z) =

∫
d2k

(2π)2
u(k, z)eik·ξ, (2)

etc. Here k = (kx, ky) = (k cos θ, k sin θ). The physi-
cal value is the real part.
Because of the presence of vorticity in an essen-

tially three–dimensional problem, the velocity poten-
tial could not be used, and it was necessary to solve
the full Euler equations, where the only assumptions
made was incompressibility and that viscosity may be
neglected. The Euler equations and continuity equa-
tion then read

ikxu+ ikyv + w′ =0; (3a)

i(kxU − k ·V)u+ Sw =− ikxp/ρ; (3b)

i(kxU − k ·V)v =− ikyp/ρ; (3c)

i(kxU − k ·V)w =− p′/ρ, (3d)

where a prime denotes derivation w.r.t. z. We can
eliminate u, v and p from these equations to ob-
tain an equation for w alone (Rayleigh equation):
w′′ = k2w. When subjected to the boundary con-
dition w(k,−h) = 0 we obtain the solutions

u =iA

[
kx cosh k(z + h) +

Sk2y sinh k(z + h)

k(kxU − k ·V)

]
(4a)

v =iA

[
ky cosh k(z + h)− Skxky sinh k(z + h)

k(kxU − k ·V)

]
(4b)

w =kA sinh k(z + h) (4c)

p =− iA[(kxU − k ·V) cosh k(z + h)

− S cos θ sinh k(z + h)]. (4d)

where A(k) is as yet undetermined.
The ship is modelled as a travelling pressure distur-

bance on the surface, chosen to have Gaussian form
for ease of comparison with literature [7, 8]:

p̂ext = p0e
−π2ξ2/b2 ; pext = (b2p0/π)e

−k2b2/(2π)2 (5)

where pext is the Fourier transform of p̂ext and ξ =
|ξ|. Here b is the “size” of the ship, and the ship’s
Froude number is Frb = V/

√
gb. Moreover we define

the surface elevation ζ(ξ) relative to an undisturbed
surface to be

ζ(ξ) =

∫
d2k

(2π)2
B(k)eik·ξ. (6)

Inserting the above solutions and definitions into the
dynamic and kinematic boundary conditions at the
free surface now gives two equations with A and B as
unknown, from which we eliminate A to produce

B(k) = −1

ρ

kpext(k)

gk − (k ·V)2 coth kh− S cos θ(k ·V)
.

(7)
This, in principle, is the full solution for the sur-
face wave, where the generalisation from the infinite
depth case reported in Ref. [14] is only the extra factor
coth kh in the denominator. While seemingly innocu-
ous, the added factor not only complicates the further
analysis but its physical repercussions are also pro-
found.

III. THE FAR-FIELD SOLUTION

The linear theory of ship waves, indeed of any waves
generated by a localised source, encounter the same
difficulty, that resulting expressions for the surface
elevation contain a pole (or several) in the k plane.
As discussed at length in the classical literature (e.g.
[5, 17], the contribution from this pole contains the
far-field, while further contributions to the integral
vanish as ξ → ∞. Physically this may be understood
by noting that the zero of the denominator of (7) cor-
responds exactly to the condition

V cos(θ − β) = c(k) (8)

where [18]

c(k) =

√
(g/k) tanh kh+ (S/2k)2 cos2 θ tanh2 kh

− (S/2k) cos θ tanh kh (9)

is the phase velocity for a wave vector k. Equation (8)
results from insisting that waves seen in the far–field
must satisfy the dispersion relation and have a phase
velocity which produces waves which are stationary
as seen from the source. In the following it will be
convenient to work with the angle γ = θ − β instead
of θ.
A complication is now that unlike the case of infinite

depth, no explicit expression for the value of k at the
pole may be found. The solution K(γ) must instead
be found numerically. The contribution from the pole
is found by using the Sokhotsky-Plemelj theorem ex-
actly as in Ref. [14], and the resulting expression in
the far–field may be written

ζ(ξ) =− 1

4ρπ

∫ π/2

−π/2

dγK(γ)pext(K(γ))

× sin[K(γ)ξ cos(γ + β − ϕ)]
∂
∂kG(k, γ)|k=K(γ)

; (10)

G(k, γ) =k − g

V 2

[
1

cos2 γ

− FrS cos(γ + β)

cos γ

]
tanh kh, (11)



FIG. 2. Example of an asymmetric ship wake resulting
from a sub–surface shear current normal to the ship’s di-
rection of motion. Here β = π/2,Frb = 0.8,FrS = 0.5 and
h = ∞. The ship travels towards the right, and the dashed
lines show the Kelvin angles (as defined in Ref. [14]) on
either side of the wake.

where we have noted that only angles |γ| < π/2 can
possibly satisfy Eq. (8), i.e., the wave propagation di-
rection must have positive component along the direc-
tion of ship motion. K(γ) now solves G(k, γ) = 0. An
example of a boat wake with side–on shear is shown in
figure 2, where the asymmetry both of the wake and
of the Kelvin angles is clear to see.

IV. THE CRITICAL VELOCITY

When the velocity exceeds a critical value, it is
necessary to further restrict the integration sector in
Eq. (10), because waves propagating close to paral-
lel with the ship motion (so–called transverse waves)
are unable to keep up. To wit, equation (8) cannot
be satisfied in a propagation direction θ for which
V cos γ > cmax(θ) where cmax is the maximum phase
velocity in said direction. From Eq. (9) one quickly
verifies that the maximum velocity is found as k → 0,
hence the velocity V is supercritical when,

V cos γ >
√
gh+ [ 12Sh cos(γ + β)]2 − 1

2Sh cos(γ + β).

We can re-write the condition for supercriticality as

max
γ

[FrS cos γ cos(γ + β) + Frh cos
2 γ] > 1 (12)

where Frh = V/
√
gh and the maximum is taken with

respect to γ. Some straightforward but tedious alge-
bra reveals that the maximum of the left hand side of
(12) is found where tan γ = −1

2FrS sinβ. This is the
propagation direction whose waves are first to vanish
once the velocity exceeds the critical. Inserting this

back into (12) we may write the condition for the ve-
locity to be supercritical to be

FrS(cosβ + 1
2FrS sin2 β) + Fr2h > 1. (13)

At infinite depth (Frh → 0) the critical value of FrS
was found in Ref. [14] to be FrS,crit = 1/ cos2(β/2).
That what we have found is a generalisation of this
is obvious when noting that Eq. (13) may be written
instead as

Fr2h
1 + FrS sin2(β/2)

+ FrS cos2(β/2) > 1. (14)

Solved with respect to velocity, the critical value of
V can be found as

Vcrit = 2
√

gh

√
Fr2Sh + 4− FrSh cosβ

4 + Fr2Sh sin
2 β

(15)

where we defined the dimensionless group FrSh =
S
√

h/g (again a Froude number, with respect to
length h and velocity Sh). Eq. (15) is readily found
to have the appropriate limits as h → ∞ and S → 0.
We may finally derive, from Eq. (12), the angu-

lar sector in which waves are unable to keep up with
the source and must be excluded from the integral of
Eq. (10). A little algebra gives the two cutoff angles
as

γ±
co =arctan

[
− 1

2FrS sinβ

±
√
( 12FrS sinβ)2 + Fr2h + FrS cosβ − 1

]
.3g

(16)

Angles γ−
co < γ < γ+

co must be excluded from the inte-
gral, and only waves travelling at a sufficiently large
angle with the ship’s motion (diverging waves) may
contribute to the wake.

V. DISCUSSION

The wake of waves behind a moving ship can change
quite radically when a shear flow is present beneath
the surface. The wake can be asymmetric and have
a smaller or larger Kelvin angles than for uniformly
flowing water, depending on the relative direction of
motion of ship and shear flow. The presence of shear
also limits the phase velocity of waves, introducing a
critical velocity beyond which the transverse part of
the wake disappears. This phenomenon is previously
known from ship waves on water of finite depth. In
the present endeavour we have laid out the theory for
ship waves in the presence of both shear flow and finite
depth, and found the critical ship velocity as an ex-
plicit function of shear, depth and the ship’s direction
of motion.
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