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SUMMARY In this paper the wave breaking induced by modulational instability is investigated numerically. The wave
train is composed by a fundamental component with two sideband disturbances and the analysis is performed for those
conditions in which the instability leads the limiting steepness to be exceeded. Due to the different speeds characterizing
individual waves and the peak of the envelope, the breaking is recurrent and several breaking events are found. The study
is focused on the quantification of the initial energy fraction dissipated by the entire breaking process and on the changes
operated by the breaking to the initial spectrum.

1. INTRODUCTION

Free surface waves break when the steepness reaches some
limiting values. There are several phenomena which can
make this happen, e.g. wind-wave and wave-current inter-
actions, shoaling effects, modulation of long waves operated
by shorter ones, among others. In typical background deep-
water oceanic conditions for dominant waves, however, these
processes are two: linear superposition and modulational in-
stability (Babanin et al., 2011).

Due to the complexity of field measurements, detailed
experimental studies of the breaking process have been mainly
done in laboratory (Perlin et al., 2013). Most of the studies
investigate the breaking induced by the dispersive focusing
technique, e.g. (Rapp & Melville, 1990; Drazen et al., 2008;
Grue et al., 2003) among many others. In this way the
breaking occurs at the focusing point as one single event.
This is not the case of the wave breaking taking place in
open ocean, for which recurrence is observed (Donelan et
al., 1972; Lamont-Smith et al., 2003) as a consequence of
the interaction of the peak wave component with the group
envelope. The generation of such breaking in laboratory is
hampered by the quite long distances needed for the devel-
opment of the modulational instability. Moreover, even if
the first breaking event can be generated, the limited lengths
of wave tanks do not allow to follow the breaking process
up to the end.

The energy dissipation and the spectrum changes asso-
ciated to the breaking are very important for wave fore-
casting models operating on large scales (e.g. Xiao et al.,
2013). In order to investigate those aspects, in previous
studies the breaking generated by modulational instability
was simulated numerically (Iafrati et al., 2012; 2013; 2014).
The recurrence of the breaking process was observed and
the energy amount dissipated by single breaking events was
quantified for some conditions. However, not all simulations
performed arrived at the end of the breaking processes and
thus it wasn’t possible to quantify the total energy dissipa-
tion and the changes to the pre-breaking spectrum.

In this paper some analyses similar to those discussed
in Iafrati et al. (2014) are performed. Larger initial steep-
nesses are considered in order to shorten the transient needed
to get to the onset of the breaking. Differently from Iafrati
et al. (2014), here the open source Gerris code is adopted

which has a sharp interface treatment and rather flexible
adaptive refinement capabilities, which allow an efficient use
of the computational resources. The time histories of the
total energy content in water as well as the corresponding
evolution of the spectra and of the maximum wave steep-
ness are shown. It is worth remarking that results presented
here are based on a two-dimensional assumption. It is hoped
that some preliminary results of three-dimensional simula-
tions can be presented at the Workshop.

2. NUMERICAL SETUP

By following what was presented in a previous edition of
this Workshop (Landrini et al., 1998), the initial condition
is composed by a fundamental wave component with two
small side band disturbances, amplitude of which is one
tenth of the fundamental component at the beginning of
the simulation. The free surface elevation η is thus
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where k0 = 2π/λ0 the wave number and ε0 = a0k0 the
steepness, a0 denoting the amplitude of the fundamental
component of wavelength λ0. The initial velocity field in
the water domain is taken from linear theory as
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where g = 9.81 m s−2 is the gravity acceleration. Sim-
ulations are conducted for fundamental wavelength λ0 =
0.60 m, which is used as reference value for lengths. Periodic



case Re steepness
I 105 0.18
II 105 0.20
III 105 0.22
IV 1455664.8 0.18
V 1455664.8 0.20
VI 1455664.8 0.22

Table 1: Simulation conditions

boundary conditions are used at the sides in the horizontal
direction. The domain width is 5λ0 whereas in the vertical
direction the domain spans from y = −0.5λ0 to y = 1.5λ0,
y = 0 being the still water level.

Simulations are performed by using the open-source Ger-
ris software (http://gfs.sourceforge.net) which solves the in-
compressible Navier-Stokes equations and has adaptive mesh
refinement capabilities by using quad-octree discretization.
The solver is based on a projection method and uses a mul-
tilevel Poisson solver (Popinet, 2009). The governing equa-
tions of the problem are:

du

dt
= α(T )

{
−∇p+∇ · [µ(T )(∇u +∇uT )] + σκδsn

}
for the fluid, and:

d

dt

∫
V

T dv +

∮
S

(Tu) · n ds = 0

for the interface advection, where u and p are, respectively,
the velocity field and the pressure, α = 1/ρ, ρ(T ) the local
fluid density, µ(T ) the dynamic viscosity, T the Volume-
of-fluid variable, κ the interface curvature, σ the surface
tension coefficient and δs the Dirac distribution which is
zero out of the interface.

The fluid properties are related to the VOF variable T
as:

ρ(T ) = ρaT + ρw(1− T )

µ(T ) = µa · T + µw(1− T )

so that T = 1 in air and T = 0 in water. The sim-
ulations presented here refer to the following parameters:
µa = 1.810 · 10−5 N s m−2, µw = 10−3 N s m−2, ρa = 1.25
kg/m3, ρw = 1000 kg/m3 and σ = 0.072 N/m (subscripts
a and w stand for air and water, respectively). Nondimen-
sional parameters of the problem are:

Re =
√
gλ0

ρwλ0
µw

= 1455664.8 (1)

We =
√
gλ0

ρwλ0
σw

= 219.95 (2)

where a quantity related to the phase speed,
√
gλ0, is used

as reference velocity. As a first step of the study, in or-
der to get confidence with the computational tool and with
its adaptive refinement capabilities, simulations were per-
formed using the much lower value of Re = 105. For this
case several simulations were performed and it was found

that a maximum resolution of 512 point for wavelength is
enough to resolve all the dissipative scales, leading to a grid
of 2560x1024 points. In order to limit the computational
effort, the adaptive refinement is used. The refinement is
based on the gradient of the VOF function and on the vortic-
ity. In a second step, the full Reynolds number was adopted,
which required a maximum resolution of 2048 grid point for
wavelength for convergence in terms of energy dissipation.
The cases studied are summarized in Table 1.

3. NUMERICAL RESULTS

In order to show the dissipation of the wave energy as a
result of the breaking process, the time history of the total
energy in water, computed as the sum of the kinetic and
potential components, is drawn in Fig. 1 for the case with
initial steepness ε0 = 0.20. Note that the energy is nondi-
mensionalized by using the square of the reference velocity
used for the definition of the Reynolds and Weber numbers,
i.e. gλ0. The time is made nondimensional by the charac-
teristic time T0 = λ0/

√
gλ0. Note that, from linear theory,

the wave period of the fundamental component is
√

2π ' 2.5
nondimensional time units.

 0.0018

 0.0019

 0.002

 0.0021

 0.0022

 0.0023

 0.0024

 0.0025

 0.0026

 0.0027

 0  20  40  60  80  100

E
w

( 
t 

)

t /T0

Case II
Case V

Figure 1: Time history of the total mechanical energy con-
tent in water for cases II and V.

From the time histories of the energy it can be seen that,
independently of the Reynolds number, there is an initial
phase during which the instability develops (see Iafrati et
al., 2014). During this stage the energy diminishes only
due to the viscous effects associated to the orbital motion.
Next, the breaking starts. As already discussed in Iafrati et
al. (2014), the breaking is recurrent with a period which is
twice the period of the fundamental wave component. This
is explained as the wave crest propagates with the phase
speed cp whereas the envelop propagates with the group
velocity cg which is half of the phase speed (Lamont-Smith
et al., 2003).

The data in Fig. 1 indicate that the energy amount dis-
sipated by the single breaking event can vary substantially.
In terms of the total energy dissipated by the breaking pro-
cess, the simulations at the two Reynolds numbers, although
being characterized by a quite different decay in the pre-
breaking stage, display a quite similar behavior during the



breaking process, in terms of the total energy fraction dissi-
pated by the breaking and of duration of the process, which
is about 20 wave periods in both cases. This is a quite im-
portant finding as it indicates that the scale does not play
a too relevant role on those aspects, and thus makes the
present result applicable to wavelengths much longer than
the 0.60 m adopted here.
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Figure 2: Comparisons of the spectra at different times dur-
ing the breaking process. The figures refer to the times in-
dicated by circles in Fig. 1. No substantial differences occur
between the results at the two Reynolds numbers.

The occurrence of breaking causes a reduction of the
higher wavelength components. In order to highlight the
phenomenon and to provide a quantitative estimate the
spectra at different phases of the breaking process are drawn
in Fig. 2. The phenomenon, which was discussed on the ba-
sis of experimental data by Tulin and Waseda (1999) and
was referred to as downshifting, is clearly shown also by the
computational results. By comparing the spectra at the two
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Figure 3: Sketch of the way used to compute the wave height
and the wavelength for the calculation of the maximum wave
steepness.

Reynolds numbers shown in Fig. 2c with the corresponding
energy contents at the same time shown in Fig. 1, it can
be noticed that the spectra are essentially similar although
the energy content is quite different. It would seem that
the spectrum is mainly related to the time elapsed from the
breaking on set rather than the actual energy dissipation,
but the point needs a much deeper investigation. Figure
2 indicates that also in terms of the spectra, the results of
the simulations at the two different Reynolds display a quite
nice overlapping, despite the different dissipation rate in the
pre-breaking stage.

Among the many open questions concerning the break-
ing generated by the modulational instability, an important
question is when the breaking ends. As an attempt of an-
swering this question, at each time step the maximum wave
steepness is computed. Several definitions exist for that
parameter, which depends on how the wavelength and the
wave amplitude are defined. In this work the maximum
steepness is computed as the maximum of the quantity

ε =
H

2

2π

l

where H is the vertical distance between the crest and the
trough at the right whereas l is the distance between the
two troughs next to the crest (see Fig. 3).

In Fig. 4 the time histories of the maximum wave steep-
ness are plotted together with the corresponding energy con-
tents in water. The threshold steepness of 0.32 discussed in
Grue and Fructus (2010) and in Iafrati (2009) is also drawn.
Although simulations IV and VI are still going, the results
indicate that the breaking starts when a limiting steepness
is reached and ceases once the steepness drops below the
threshold value. Note that once the breaking ceases the
energy dissipation rate takes about the same slope of the
pre-breaking phase. These conclusions are essentially simi-
lar to what was found for a gentle spilling breaking in Iafrati
(2011). It is worth noticing that the reduction of the wave
steepness shown in Fig. 4 is only partly related to the re-
duction in the wave amplitude whereas a important role is
played by the downshifting phenomenon. This is clearly
seen in Fig. 2 where the peak of the spectrum moves from
k = 10.47 m−1 to k = 8.37 m−1.

Before closing this section, it is worth providing a few
additional considerations on the time histories of the maxi-
mum steepness provided in Fig. 4. The maximum steepness
oscillates with a period of about 5 nondimensional units,
which is twice the wave period. As already discussed, this
is a consequence of the interaction between the wave com-
ponents and the group envelope. A second remark concerns
the peak values of the steepness reached during the break-
ing process for which numerical results predict maximum
values exceeding 0.55. In Toffoli et al. (2010), the value
0.55 was found to be a limiting steepness for oceanic waves.
It is not clear at the moment if the larger values found here
are caused by the way in which the maximum steepness is
computed during the breaking event when the free surface
takes quite complicated shapes. Further studies are needed
to clarify this aspect.
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Figure 4: Time histories of the maximum wave steepness
and of the total energy content in water for the three
different steepnesses: a) case IV (ε0 = 0.18), b) case V
(ε0 = 0.20), c) case VI (ε0 = 0.22). The horizontal line
indicate the threshold steepness of 0.32.
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