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1 Introduction

Many studies have been devoted to the phe-
nomenon of Faraday waves, which appear at
the free surface of a fluid when the container
is submitted to periodical vertical oscillations
[3, 9, 12]. The interest of this setup is that
it gives rise to the formation of various pat-
terns. According to the forcing amplitude, fre-
quency and fluid viscosity, the free surface can
exhibit standing solitary waves [2, 16, 19] or
patterns of different symmetry, such as stripes,
squares, hexagons, quasicrystalline ordering, or
star-shaped waves [4, 5, 6, 15]. These symmetry
breaking result from the nonlinear couplings be-
tween waves. Thus, the study of Faraday waves
constitutes a privileged way to explore complex
nonlinear phenomena by the mean of a sim-
ple experimental device. Understanding these
waves has also applications in hydrodynamics,
for instance in sloshing related problems.
Despite noticeable advances in the theoretical

understanding of Faraday waves [11, 13, 14, 18]
some of their fundamental properties remain
into darkness. For instance, the relation of
dispersion ω(k) of parametrically-forced water
waves is often erroneously identified with that
of free, unforced surface waves; this approxima-
tion holding only without forcing and without
dissipation. However, the knowledge of the ex-
act dispersion relation is of crucial importance.
The first aim of this work is to establish the

actual relation of dispersion of Faraday waves
for nonzero forcing and dissipation. As shown
below, the dispersion relation of free, unforced
waves is significantly altered in the case of
parametrically–forced excitations: two different

wavenumbers correspond then to the same an-
gular frequency. We carry out their stability
analysis and we discuss the nature of the bi-
furcation giving rise to the wavy surface state
from the rest state when the forcing is increased.
Thus, the threshold of the Faraday instability
is established as well as the selected wavenum-
bers in both cases of short and long waves. At
last, it is shown that the transition can be either
smooth (supercritical) or discontinuous and hys-
teretic (subcritical), depending on the thickness
of the liquid layer.

2 Mathieu equation

Consider a container partly filled with a New-
tonian fluid of depth d, moving up and down in
a purely sinusoidal motion of angular frequency
Ω and amplitude A, so that the forcing accel-
eration is Ω2

A cos(Ωt). In the reference frame
moving with the vessel, the fluid experiences a
vertical acceleration due to the apparent grav-
ity G(t) ≡ g − Ω2

A cos(Ωt), g being the gravity
acceleration in the laboratory frame of reference
and t being the time.

Let be x = (x1, x2) and y respectively the
horizontal and upward vertical Cartesian co-
ordinates moving with the vessel. Ordinates
y = −d, y = 0 and y = η(x, t) respectively cor-
respond to the horizontal impermeable bottom,
of the liquid level at rest and of the imperme-
able free surface. The Fourier transform of the
latter is ζ(k, t) ≡

∫∫∞

−∞
η(x, t) exp(−ik · x)d2x,

where i2 = −1 and k is the wave vector with
k = |k|.
For parametrically-driven infinitesimal sur-

face waves, ζ is described by a damped Mathieu
equation [3, 4]

ζtt + 2 σ ζt + ω 2
0 [ 1 − F cos(Ωt) ] ζ = 0, (2.1)

where σ = σ(k) is the viscous attenuation, ω0 =
ω0(k) is the angular frequency of linear waves
without damping and without forcing, and F =
F (k) is a dimensionless forcing. For pure gravity
waves in finite depth, we have

ω 2
0 = gk tanh(kd), F = Ω2

A / g. (2.2)

In (2.1), the damping coefficient σ originates
in the bulk viscous dissipation and in the viscous
friction with the bottom in the case of shallow
water. For free gravity waves in the limit of
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small viscosity, we have [7, 8]

σ = νk2
[

2 +
coth(2kd)

sinh(2kd)

]

+
k
√

kνc0/2

sinh(2kd)
(2.3)

where ν is the fluid kinematic viscosity and c0 =√
gd. The first term in the right-hand side of

(2.3) represents the bulk dissipation, while the
second one models the friction with the bottom.
It is well known that systems obeying a

(damped) Mathieu equation with excitation an-
gular frequency Ω exhibit a series of resonance
conditions for response angular frequencies ω
equal to nΩ/2, n being an integer [1]. These
solutions are expressed in term of the Mathieu
functions together with a dispersion relation in-
volving the so-called Floquet exponent. Math-
ieu functions are transcendent and cannot be
expressed in term of simple functions in closed
form. In order to understand qualitatively these
solution we therefore consider here approxima-
tions in the limit of small forcing and dissipa-
tion.
Assuming F ≪ 1 and σ ∼ O(F ), an approx-

imate dispersion for the sub-harmonic response
(n = 1) is (with n = 1, ω = Ω/2)

ω0 / ω ≈ 1 ±
√

(F/4)2 − (σ/ω)2, (2.4)

where ω0 is related to k via (2.2). One condition
to obtain stationary waves is that ω0 is real, thus
defining a threshold F↓ = 4σ/ω with F > F↓

for the forcing in order to obtain time-periodic
waves. Interestingly, we note that there are two
wavenumbers k corresponding to the same wave
angular frequency ω (for Ω, F and σ given),
whatever the relation ω0 = ω0(k).
Assuming now F ≪ 1 and σ ∼ O(F 2), an ap-

proximate dispersion for the harmonic response
(n = 2, ω = Ω) is

ω0 / ω ≈ 1 + 1

12
F 2 ±

√

1

64
F 4 − (σ/ω)2. (2.5)

The condition of reality for ω defines the thresh-
old F 2 > 8σ/ω. Analog approximations for all
n can be easily derived.
Despite a limited range of validity, these rela-

tions clearly demonstrate that two wavenumbers
(i.e., two ω0 ≡ ω±

0 ) correspond to the angular
frequency ω = nΩ/2. Equations (2.4) and (2.5)
result from a linear approximation, and their va-
lidity is restricted to waves of infinitesimal am-
plitude. However, nonlinearities play a signifi-
cant role for waves of finite amplitudes, and we
will now look closely at the nonlinear effects in
an amplitude equation.

3 Amplitude equation

Seeking for an approximation in the form
η(x, t) = Re{A(t)} cos(kx) + O

(

A2
)

, assuming
|kA| ≪ 1 and weak forcing and dissipation (i.e.,
F ∼ O(|A|2) and σ ∼ O(|A|2)) an equation for
the slowly modulated amplitude A can be de-
rived in the form [10, 13]

dA

dt
+ (σ − iω0)A − FΩ

8i
eiΩtA∗

− KΩk2

2i
|A|2A = 0, (3.1)

a star denoting the complex conjugate. It is
obvious that the sign of the nonlinear term in
(3.1), via the sign of K, plays a key role in the
stability of the solutions.
For pure gravity waves on finite depth, we

have [17] (with s = sech(2kd))

K =
2− 6s− 9s2 − 5s3

16(1 + s)(1− s)2
.

Note that K changes sign with the depth: K >
0 for short waves, K < 0 for long waves and
K = 0 for kd ≈ 1.058. Defining B = A exp( i

4
π−

i

2
Ωt), (3.1) yields

dB

dt
=

(

iω0 +
Ω

2i
− σ

)

B +
FΩ

8
B∗

+
KΩk2

2i
|B|2B, (3.2)

which is a more convenient form for the analysis
below.

We focus now on two solutions of (3.2) that
are of special interest here: the rest B = 0 and
the standing wave of constant amplitude. The
first one is trivial and we investigate below its
stability. The second one is obtained seeking for
solutions of the form B = a exp( i

4
π − iδ), a and

δ being constants, equation (3.2) yielding thus

ω0

ω
= 1 + K(ka)2 ±

√

F 2

16
− σ2

ω2
, (3.3)

with ω = Ω/2. As a → 0, the approximate dis-
persion relation (2.4) is recovered. If F = σ = 0,
the dispersion relation of weakly nonlinear, un-
forced, standing waves in finite depth is recog-
nised too. Therefore, compared to free nonlinear
waves, the dispersion relation of parametrically-
forced waves is characterised by the shift in an-
gular frequency ∆ω = ±

√

(Fω/4)2 − σ2 inde-
pendent of the wave amplitude a.
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In the subsequent discussion, we consider that
the relation K(k) is uni-valued and we limit our
study to the case K > 0 (for K < 0 the analysis
is similar replacing ω0 − ω by ω − ω0).
According to the equation (3.3), we have

K(ka)2 =
ω0

ω
− 1 ∓

√

(

F

4

)2

−
(σ

ω

)2

, (3.4)

with the constraint K(ka)2 to be real and pos-
itive. The last term in the right-hand side of
(3.4) being real, the forcing F must exceed a
minimum value F↓ = 4σ/ω to generate at least
a stationary nonzero amplitude wave, as already
mentioned above. The condition F > F↓ being
fulfilled, if we have moreover F < F↑ with

F↑ ≡ 4ω−1
√

(ω0 − ω)2 + σ2 ,

there are two stationary solutions of nonzero
amplitude of the dispersion relation (in addition
to the solutions with the opposite phase and to
the rest solution B = 0).
If F > F↑, the positivity of the right-hand side

of (3.4) yields only one nonzero solution of (3.1)
(in addition to the solution with the opposite
phase and to the rest solution). Thus, disre-
garding the phase, the flat surface is the unique
solution for F < F↓, there are three solutions
(one being the rest) in the range F↓ < F < F↑,
and two solutions (one being the rest)) in the
range F > F↑. An important question to ad-
dress now is, whether or not, these stationary
solutions are stable.

4 Stability analysis

Introducing a small perturbation into the sta-
tionary solutions of the amplitude equation
(3.2), we look for the eigenvalues of the lin-
earised system of equations obeyed by the per-
turbation. The stability analysis that we con-
duct below resembles that carried out in [10]
for the parametric pendulum. However, a ma-

jor difference is that the eigenfrequency of a
freely-oscillating pendulum is unique, whereas
free, unforced, water waves exhibit a continuous
spectrum of mode frequencies. Moreover, the
sign of the nonlinear terms in the wave equa-
tion depend on the depth [17].
First, we study the bifurcation from rest (i.e.,

the stability of the trivial solution B = 0). The
linearised equation (3.2) has two eigenvalues λ1

and λ2 such that

λj = −σ + (−1)j
√

(F ω / 4)
2 − (ω − ω0)

2
.

If (Fω/4)2 < (ω − ω0)
2 + σ2, the real parts of

both eigenvalues are negative. Therefore, the
rest is stable. If (Fω/4)2 > (ω − ω0)

2 + σ2, the
eigenvalue λ2 is real and positive. Therefore,
the rest is unstable and

F↑ = 4
√

(1− ω0/ω)2 + (σ/ω)2 (4.1)

corresponds to the minimal forcing necessary to
destabilise the rest state and to generate surface
waves.
Second, we analyse the stability of the per-

manent solutions of finite amplitude a > 0
of the amplitude equation (3.2). We consider,
for simplicity, small perturbations in the form
B = [a + b(t)] exp i(π/4 − δ), a, δ and ω0 be-
ing given in (3.3), and b a complex amplitude to
be determined such that |b| ≪ a. To the linear
approximation, the eigenvalues of the resulting
equation are (j = 1, 2)

λj = − σ + (−1)j ×
√

σ2 −K(2ωka)2
[

1− ω±
0 /ω +K(ka)2

]

.

The criterion for having both eigenvalues real
and negative is 1 − ω±

0 /ω + K(ka)2 > 0. This
inequality is to be coupled with (3.4). Thus, it
appears clearly that, for the case K > 0, the
two eigenvalues are both negative if ω0 = ω−

0 ,
thence ω0 < ω. The corresponding stationary
solution is therefore stable. The other station-
ary solution ω0 = ω+

0 , existing in the range
F↓ < F < F↑, corresponds to λ1 < 0 and λ2 > 0
and is therefore unstable.
Note that the neutrally stable limiting case

λ2 = 0 is obtained for F = F↓ or ka = 0 or
K = 0. The two first cases correspond to the
rest (i.e., no waves), while the third one requires
a higher-order equation to conclude on the sta-
bility. Note also that the opposite conclusions
hold for K < 0: the stable solution corresponds
then to ω0 = ω+

0 (i.e., ω0 > ω).

5 Wavenumber selection

We can now determine the wavenumbers se-
lected at the instability onset. The minimal
forcing required to destabilise the free surface
from rest is given by (4.1), where ω0 is related
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to the wavenumber k by (2.2), the dissipation
factor σ being given in (2.3). The first wave to
emerge from rest is the one requiring the smaller
value of F↑, i.e., this wave corresponds to the
wavenumber such that ∂F↑/∂k = 0, i.e.,

∂ F↑

∂k
=

16 (ω0 − ω)

ω2 F↑

∂ ω0

∂k
+

16 σ

ω2 F↑

∂ σ

∂k
= 0,

(5.1)
together with ω = Ω/2.
In the limiting case of deep water (i.e., d =

∞, ω0 =
√
gk, σ = 2νk2, the most unstable

wavenumber k given by (5.1) is

2ω0 = ω +
√

ω2 − 16σ2.

In the opposite limit of long waves (i.e. kd ≪ 1,
ω0 = k

√
gd, σ = (gd)1/4

√

kν/8d2), the most
unstable wavenumber corresponds to

ω0 = ω − 16ν/d2.

In both cases, the first mode emerging from the
rest is such that ω0 < ω. The same conclu-
sion arises for arbitrary depth and with surface
tension under quite general assumptions (to be
explained at the conference). We conclude that
the critical mode ω0(k) selected at the desta-
bilisation threshold F↑ of the rest state fulfils
the inequality ω0 < ω = Ω/2 in both cases of
short and long waves. However, as we men-
tioned above, the sign of the nonlinear term in
equation (3.1) depends on the depth, K being
positive for short waves, and negative for long
ones. Therefore, we conclude that the transition
from the rest to the wavy state is subcritical (i.e.,
with hysteresis) for long waves, and supercritical

(i.e., smooth) for short waves.

6 Conclusion

The dispersion relation of Faraday waves is
modified compared to that of free, unforced
waves: the forcing amplitude and the dissipa-
tion play a key role in the relation of disper-
sion. For a given forcing frequency, there are
two corresponding wavenumbers. We have de-
termined the value of the forcing at the insta-
bility threshold, in both cases of short and long
waves, as well as the selected wavenumbers. We
have also studied the nature of the bifurcation
at the instability onset, and we have shown that
the transition is supercritical for short waves
and subcritical for long waves.
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