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1 Introduction 

We investigate the violent slamming of a steep wave onto a vertical wall. The novelty of our work relies on the 

assumption of a breaking type impact. With reference to the plane impermeable wall of Fig. 1, it is assumed that 

a thin air pocket is formed adjacent to the wall, between the lower and the upper impacted sections of the wall. 

The solution process, as outlined in the sequel, could be extended to accommodate an uneven bottom 

configuration. However, in the present study it is explicitly assumed that the bottom is horizontal.  

 
Figure 1 Definition sketch; The curves are free surfaces on which 0 . 

The boundary conditions at x=0 in the intervals  z0  and hz   are defined by default through the 

normal components of the velocities of the wave before impact, which are assumed to be the constants V1 and V2, 

respectively. In the general case we assume that 21 VV  . In the intermediate region   z the associated 

boundary condition is governed by the pressure which can be a function of z. The present analysis assumes that 

the pressure impulse (and accordingly the potential) in the air pocket is zero. Nevertheless the outlined 

methodology can be extended to accommodate non zero constant potential using the same procedure. It is also 

assumed that at the time of impact the width of the intermediate section between the wave front and the wall 

0 .  

2 The mixed boundary value problem 

In the realm of potential theory, the mixed boundary value problem in terms of ),( zx , which is the sudden 

change in the velocity potential is: 

02   , )0,0( hzx  , (1) 

0/  z , )0,0(  zx , (2) 

0 , ),0( hzx  , (3) 

1/ Vx  , )0,0(  zx , (4) 

0 , ),0(   zx , (5) 

2/ Vx  , ),0( hzx   , (6) 

0 , )0,( hzx  . (7) 

The form of the solution that satisfies eqs. (1)-(3) and the far-field behaviour (7) is  
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where ,/)2/1( hnn    n ϵ N and Cn are coefficients to be found from the remaining boundary conditions 

(4)-(6). Note that the present analysis is applied at the instant of the impact and hence Cn are constants, 

independent of time.   

3 Triple trigonometrical series 

Introducing eq. (8) into the boundary conditions (4)-(6) we find the following problem that involves triple 

trigonometrical series 
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Most literature on mixed boundary value problems that involve trigonometrical series, concern dual – not 

triple – relations. Relevant examples are the studies of Tranter [1-3]. For a review of dual trigonometrical series 

the reader is referred to the classical book of Sneddon [4], which cites nearly all studies prior to the time it was 

published. Triple trigonometrical series concern more complicated mixed-boundary value problems and relevant 

examples are the works of Tranter [5] and Kerr et al. [6]. However, in both papers the boundary data in two of 

the three boundary sets are identically zero.  

The required analysis to solve the mixed problem governed by eqs. (9)-(11) is quite complicated and 

therefore only the basic steps are given in the sequel. After several mathematical manipulations, the triple series 

of eqs. (9)-(11) are transformed into the following three conditions on new coefficients nB  
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2/1 ,  /b ,  nn  , /hc   nn  , /zy  . The next step is to reduce the triple 

trigonometrical series to dual by satisfying the last one (14). This is accomplished assuming an alternative form 

of the unknown constants Bn according to which  
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Eq. (15) satisfies eq. (14) as it holds that [7] 
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Introducing eq. (15) into eqs. (12) and (13) the problem is reduced to the dual trigonometrical series  
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The reduced model of eqs. (17) and (18) is processed further using specific expressions that relate the 

infinite series of Bessel functions which appear in eqs. (17) and (18) and the Sonine-Schafheitlin integral. In 

particular it can be shown that   
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where 2F1 is the hypergeometric function with single variable. Finally, after further mathematical manipulations 

the dual trigonometrical series of eqs. (17) and (18) are reduced to the more compact forms 
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The new unknowns of the problem are now the coefficients ,m  whilst the parameters 

)(),(),(, **  GF  depend only on the given data of the problem (via expressions omitted for brevity). Dual 

trigonometrical series of the form of eqs. (22) and (23) have been treated by several authors (see Sneddon [4]). 

The coefficients m  are  
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where Pn denotes the Legendre polynomial of degree n and     
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4 Some results 

Although eqs. (24)-(26) appear in a compact set of expressions, the coefficient 0  lies within the definition of 

the function )(1 th . The right-hand side of eq. (24) depends on 0 , so this coefficient can be computed after 

rearrangement of terms or by an iterative scheme. Once 0  is accurately evaluated, expression (26) is wholly 

determined and can be used in eq. (25) to compute the other coefficients. Also, the truncation of the infinite 

series expressions has to be handled sensitively to ensure that eq. (16) is satisfied accurately and at least 200 

modes were found necessary to achieve an accuracy of 4 significant digits for the coefficients m . The rapid 

decrease in magnitude of  m , with increasing m, is shown in Fig. 2.  

In the following we present some results for wave impacts for which we hold fixed h=1m, β=0.8m, 

V2=(gh)1/2≈3m/s and vary α and V1. The solution process indeed converges quite fast, not only for the leading 
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term  0  but also for the other expansion coefficients m , 0m . Figs. 3 and 4 show the pressure impulse 

p  [see eq. (8)] for unit density  , along the lower portion of the wall for several α (Fig. 3) and several 

values of the velocity V1 (Fig. 4). As expected the pressure impulse is reduced for lower velocities. An 

interesting result is that the pressure impulse obtains its maximum value at the bottom. Also, for the same 

velocities the pressure impulse is decreased for longer wetted sections (Fig. 3). Further fluid mechanical 

consequences of the results will be presented in the talk.  
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Figure 2 The expansion coefficients m , 0m  for h=1, α=0.1, β=0.8 and V1=V2=3 where 9744.10  .

 
Figure 3 Normalized pressure impulse for equal 

velocities V1=V2=3 and variable α=0.1, 0.3 and 0.5. 

 
Figure 4 Normalized pressure impulse for α=0.1 

and variable velocity V1=3, 2 and 1. 


