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Highlights 

    Measurements of heaving motions of a floating air-filled bag caused by forced oscillations of the internal pressure. 

    Partial validation of a linear frequency-domain numerical model. 

 

1. Introduction 

A proposed wave energy converter related to that described by Farley (2011) consists of a pressurised axi-symmretic 

air-filled bag, ballasted to float at about half depth.  The bag contracts and expands under the action of wave-induced 

heaving motion, pumping air into and out of a secondary, rigid, chamber (V2 in figure 1(a)) which acts as an air spring. 

The system’s resonant frequency in heave is determined largely by V2 and the volume of the bag V1. Oscillating air 

flow between V1 and V2 drives a power take-off. 

This paper describes experiments and numerical modelling aimed at understanding the behaviour of this device. Rather 

than test it in waves, in this initial investigation we chose to replace the power take-off with an oscillating air pump. 

Forcing air into and out of the bag periodically caused it to heave and radiate waves when floating in water initially at 

rest. Measurements of the bag’s response are compared with the predictions of a linear frequency-domain radiation 

theory, which uses a finite difference approach to model the harmonic deformations of the bag. Agreement is promising 

on the whole, providing some insights into the likely performance of the device when operating as a wave energy 

converter. 

2. Experimental arrangements 

The experiments were carried out in the wave basin 

at Plymouth University, measuring 35m x 15.5m, 

with a water depth of 3m. The overall height of the 

bag and ballast container (sketched in fig. 1(b)) was 

about 1.6m. Since the compressibility of air is the 

same as in the prototype, the volumes of V1 and V2 

had to be considerably larger than those implied by 

the cube of the scale factor (about 1:16), in order 

for the resonant frequency to be scaled correctly. 

Accordingly, V1 was augmented by the volume of 

an additional air chamber which was connected to 

the top of the bag by a 100mm diameter flexible 

hose, and to a similar chamber representing V2, as 

sketched in figure 1(b). Both chambers were 

mounted on the gantry spanning the tank, and each 

had a volume of 1m
3
. The duct between them 

housed an oscillating air pump. 

The form of construction of the bag, both for the model and envisaged for the full-scale device, is that of a membrane 

enclosed within an array of longitudinally very stiff tendons distributed around the circumference. This gives it the 

appearance of a pumpkin, with the membrane bulging out between the tendons, which are intended to carry all of the 

meridional load. In the model the membrane was unreinforced polyurethane film and the 16 tendons, welded on, were 

made from 30mm wide polyurethane-coated polyester strips. Ballast was provided by lead shot inside a cylindrical steel 

container with a hemispherical base, mounted beneath the bag. The device is shown in figure 2, floating in the tank. 

The air pump consisted of two pairs of 300mm diameter bellows on either side of diaphragms which were driven by 

electro-magnetic digital linear actuators. A sketch is shown in figure 3. Other instrumentation included pressure 

transducers in the bag and on either side of the air pump, and a displacement transducer recording the elevation of the 

top of the bag. Video cameras recorded the motion of the bag from the side, both above and under water.  

Figure 1 (a) Configuration of (a) the full-scale device 

and (b) the laboratory model. 
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Figure 3. The oscillating air pump. 
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Figure 2. Combined 

under- and above-water 

images of the bag and 

ballast container. 

 

Driving the air pump generated an oscillating air flow into and out of the bag, causing it 

to heave and radiate waves. Measurements were made over a range of frequencies in 

each of five conditions defined by the initial pressure in the bag and its elevation. As 

discussed by Kurniawan et al. (2015), for a given internal pressure there are in general 

two elevations at which the bag is in equilibrium in still water. 

3. Linear frequency domain numerical model 

For the purpose of computing the response of the model device to an oscillating air 

flow, the shape of a tendon in the vertical plane, together with the outline of the ballast 

container, can be represented by a series of straight elements of uniform length h 

between nodes. Nodes and elements are numbered from the bottom of the ballast 

container to the top of the bag on its axis. (The inlet pipe at the top is omitted.) In still 

water conditions, the inclination of the nth element from the horizontal is n. 

Resolving forces in the normal direction at the nth node on the bag (where the radius 

and the elevation relative to the water surface are Rn and Zn) leads to  
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assuming that all loads are carried by the tendons. In equation (1) P is the internal 

pressure, T is the total tension in all tendons, and Hn = 1 when Zn < 0, otherwise 0. 

Resolving forces at the node at the bottom where the tendon joins the top of the ballast 

container (n = 1) provides one boundary condition, namely 
2

1sinT W R P   , where W is the submerged weight of 

the ballast, while at the top (n = N), N-1 = by symmetrySolutions to equation (1) for the shape of the bag in still 

water can be found by various means (Kurniawan et al., 2015). 

In solving the dynamic case, the time dependent nature of each parameter is represented by a small harmonic 

perturbation about the mean, i.e. the static solution. Thus the radius of the nth node becomes the real part of 
i
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where rn  is a complex amplitude,  is the frequency and  is time. Similar adjustments are made to elevations: 
i

n nZ z e  ; inclinations, 
i

n ne
   ; the tension, iT te  ; the internal pressure, 

iP pe  , and the internal 

volume of the bag iV ve  .  Also, beneath the water surface all surfaces experience hydrodynamic pressure whose 

complex amplitude is denoted n.  

The solution procedure is first to introduce these perturbations into equation (1), expand the result, discard terms 

involving products of small quantities, and subtract the static solution in the usual way.  It is helpful to define  
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            n = 1, 2, … N1. (2) 

The elements of the column matrix {r} = {r1   r2    …  rN-2 }
T
  and  z1, the complex amplitude of the heaving motion 

of the ballast, become the primary unknowns. To a first approximation all other parameters can be expressed in terms of 

these, ultimately rendering the problem in the form of a set of complex linear equations. Besides the geometry of the 

system in still water, the other independent parameters are the volume swept out by the air pump, and its frequency . 

Hydrodynamic pressures are computed by using 

an approach for calculating wave radiation by 

axisymmetric bodies set out by e.g. Fenton (1978) 

and Isaacson (1982) (both of which contain 

significant errors). For a given geometry and a 

given set of normal velocities {} at the nodes, the 

result can always be expressed in the form {} = 

[D]{}. In the present case the elements of [D] are 

computed from the known initial geometry of the 

device, and those of  {} can be related to {r} 

and z1 by way of the complex amplitude of the 

internal pressure, which is assumed to follow the 

adiabatic law in response to the oscillatory flow of 

air from the air pump. 

 

 

 



4. Measurements and predictions 

Slow inflation and deflation 

Figure 4 shows a plot (as a continuous grey line) of the measured 

trajectory traced out by the elevation of the top of the bag against its 

internal pressure, as the bag is slowly inflated in still water. As 

described by Kurniawan et al. (2015), the pressure initially falls as 

the bag rises, then increases again as the membrane tightens. The 

trajectory returns along almost the same path as the air is released 

again. A dashed line represents a numerical solution of equation (1) 

for these quasi-static conditions. Better agreement with the 

measurements than that shown by Kurniawan et al. has been 

achieved here by empirically increasing the length of the tendons in 

the numerical model from 1.5m (as they were when unstressed in 

the laboratory model) to 1.65m. Of this 150mm difference, about 

35mm can be attributed to stretch in the 16 tendons which, over the 

range of the test conditions, would have been under a tension of at 

least 300N each. The remaining difference is tentatively associated 

with the actual inflated form of the membrane. The bag was 

constructed from 16 ‘petals’ welded together at the tendons. Since 

the petals were two-dimensional and less stiff under tension than the 

tendons, it is inevitable that when the bag was inflated, they would 

bulge out, stretching in both directions and taking some of the load 

away from the tendons.  With this in mind it seems reasonable to 

argue that the effective tendon length should be increased to reflect the greater 

meridional length of the bulging and load-carrying membrane. Accordingly, 

results presented below were computed for a tendon length of 1.65m. Also, 

amid some uncertainty (within a range of about 8%) about the effective 

submerged ballast weight, the calculations used a figure of 3659N to provide a 

reasonable fit with the measurements.  

Initial conditions for the wave radiation tests and predictions are identified 15 

in figure 4. 

Computed resonant frequencies 

Behind the concept of this device lay the idea that the negative stiffness of a 

body that shrinks as it sinks and expands as it rises in water otherwise at rest 

would cause it to have a longer resonant period in heave than a rigid body of 

the same size and shape. This might be an advantage, leading to a reduction in 

the size of a wave energy converter designed for a given sea-state. Computed 

resonant periods for compressible and rigid bodies having the shape of defined 

by the initial conditions in the 5 test cases are plotted in figure 5. For the 

compressible air-filled bag, predicted periods are more than 15% longer than 

those for rigid bodies of the same shape, though obviously the frequency 

response of the bag depends on the stiffness of the air spring, and therefore the 

volume of air enclosed, and connected to it. 

Response of the device to an oscillating air flow 

In these tests the air pump was operated over a range of frequencies in turn, at amplitudes that generated a small 

heaving motion in the device. Results are plotted below as a function of the period of the driving motion. On the left 

figure 6 shows, for each case, the amplitude of the vertical motion of the top of the bag, and on the right its phase 

relative to that of the air pump.  

Computed amplitudes and phases agree reasonably well with the measurements for those cases, 5 and 4, in which the 

bag is strongly inflated and high in the water. The difference between measured and predicted resonant frequencies 

becomes more pronounced in cases 3, 2 and 1. In the last of these the pressure drop across the membrane would have 

been negative in the lower part of the bag so that its profile would be concave, but the reason for the disagreement is not 

clear. Nevertheless, the present numerical model seems to be a good starting point for an investigation into the 

performance of the device as a wave energy converter. 

 

Figure 4. Trajectories of the elevation of 

the top of the bag when inflated and 

deflated slowly in still water. The grey 

line is the measurement, the broken line 

the prediction, using a tendon length of 

1.65m. Initial conditions for dynamic 

tests are identified 15. 

 

Figure 5. Resonant heave 

periods of the air-filled bag 

driven with the air pump (dark 

grey), and  of a rigid body of the 

same initial shape (light grey). 



        

         
 

Figure 6. On the left, measured and computed heaving amplitudes of the top of the bag as 

functions of excitation period for a constant pump displacement of 1 litre. The phase of the 

motion related to that of the air pump is shown on the right. Measurements are shown as points 

and broken lines, numerical predictions as continuous lines. 
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