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Highlights:

• Taking the appropriate limit of the solution of the Helmholtz equation in a wedge geometry
suggests a novel set of cross-channel expansion functions, used to model wave propagation in
a channel of non-uniform width, which depend on both the local channel width and the slope
of the channel walls.

• Numerical results for an extended multi-modal expansion incorporating these novel expansion
set will be presented at the Workshop.

1. Introduction

In 2005, Ehrenmark derived in [1] a new dispersion relation for linear surface gravity waves on
finite-depth fluid, extending the classical formula ω2/g = k tanh(kh), in which ω is the prescribed
angular wave frequency, h is the constant depth, k is the wavenumber and g is the acceleration due
to gravity, to the case in which the fluid bed is sloping linearly, with h′ ≡ constant = tanα, say,
for α small. He found that

ω2/g = k tanh((α cotα)kh), (1.1)

in which the combination α cotα → 1 in the limit as h′ → 0, so recovering the classical result as
the bed flattens out. This result comes from a two-term asymptotic expansion, for small α, of an
integral form of the standing wave solution on a plane beach, using the method of steepest descent.
In [1] this extended dispersion relation is then used within various forms of the mild-slope equation
(MSE) to derive numerical solutions which agree well with numerical solutions of the full linear
problem, even for relatively steep bed slopes.

Here we follow a similar procedure, but applied to the propagation of linear surface gravity waves
along a uniform-depth channel, bounded by vertical walls at y = ±h±(x), with x and y denoting
(horizontal) Cartesian coordinates, which vary with x. If the channel walls vary linearly with x
then the domain is wedge-shaped (analogous to Ehrenmark’s plane beach geometry); the solution
is easily found explicitly in terms of appropriate polar coordinates, with azimuthal dependence
proportional to cos[µn(θ − θ1)] for n ∈ N0, where µn = nπ/(θ2 − θ1) for particular θ1, θ2. The
appropriate limit of this solution recovers at leading order the uniform width solution, whose cross-
channel dependence is proportional to cos[αn(y + h−)] for n ∈ N0, where αn = nπ/w, in which
w(x) = h−(x) + h+(x) is the channel width. But if the full unapproximated expression for µn is
retained, the cross-channel eigenvalue αn is replaced by

ᾱn = αn

(
w′
/

tan−1

(
w′

1− h′−h′+

))
.



This suggests that a multi-modal approximation in which the solution is expanded in terms of
cos[ᾱn(y + h−)] may yield accurate results, in the same way as the MSE incorporating (1.1) per-
forms well, and this we investigate here.

2. Statement of problem

We consider the propagation of linear surface gravity waves in a channel of uniform depth h. Carte-
sian coordinates (x, y, z) are used, z being measured vertically upwards from the undisturbed free-
surface. The channel occupies the region −h−(x) < y < h+(x), for given continuous functions
h±(x), so that we require the solution φ(x, y) of the boundary-value problem{

φxx + φyy + k2φ = 0 (−h−(x) < y < h+(x))
φy ∓ h′±φx = 0 (y = ±h±(x))

(2.2)

together with appropriate radiation conditions. The wavenumber k is the positive root of the dis-
persion relation ω2 = gk tanh(kh), in which ω > 0 is the prescribed angular wave frequency
(harmonic time-dependence proportional to e−iωt is implicit throughout) and g is the acceleration
due to gravity.

2.1 Multi-modal expansion

In regions of constant width, the solution of (2.2) can be written as

φ(x, y) =

∞∑
n=0

(A+
n e

iγnx +A−n e
−iγnx)φ(n)(h±, y), φ(n)(h±, y) = cos[αn(y + h−)], (2.3)

where A±n are constants, w = h+ + h− is the channel width, αn = nπ/w, and

γn =

{ √
k2 − α2

n if k ≥ αn,
i
√
α2
n − k2 if k < αn,

but in regions where the channel width varies with x a multi-mode expansion of some sort is com-
monly used to approximate the solution (see [2] for a sophisticated example). The simplest multi-
mode expansion assumes that the local modal structure can be approximated by that of a uniform
width channel of the same (local) width, so that we write

φ ≈ φ̄ =
M∑
n=0

vn(x)φ(n)(h±(x), y) (2.4)

for some prescribed M ∈ N0, and where now h± = h±(x). Because this approximation cannot
hope to exactly satisfy (2.2) we instead require that∫ h+

−h−

(
φ̄xx + φ̄yy + k2φ̄

)
φ(m)(h±(x), y) dy = 0, (m = 0, 1, . . . ,M).

This yields a system of differential equations of the form

A(x)v′′(x) + 2B(x)v′(x) + C(x)v(x) = 0,

in which v = (v0, . . . , vM )T , and A, B and C are known matrix-valued functions whose entries are
integrals of combinations of the φ(m) and their derivatives.



2.1.1 Solutions in the wedge geometry, and its limiting form

As an extension of the standard multi-mode expansion, we seek to approximate the local modal
structure by that of the solution for a linearly widening or narrowing channel, i.e. for a wedge.

Consider the channel close to the point x = x0. For x near x0, we have h±(x) ≈ h±(x0) +
h′±(x0)(x−x0), and provided w′(x0) 6= 0 the two straight lines y = ±[h±(x0) +h′±(x0)(x−x0)]
meet at (x, y) = (x̄, ȳ) where

x̄ = x0 −
w(x0)

w′(x0)
, ȳ =

h+(x0)h′−(x0)− h′+(x0)h−(x0)

w′(x0)
.

If the channel is locally widening (narrowing) with increasing x then x̄ < x0 (x̄ > x0). These
straight lines form the boundaries of our wedge-shaped domain, and (x̄, ȳ) is its apex. In terms of
polar coordinates (r, θ) defined by r2 = (x− x̄)2 + (y− ȳ)2, tan θ = (y− ȳ)/(x− x̄), the solution
of the Helmholtz equation in the domain {(r, θ) : r > 0, θ1 < θ < θ2} subject to homogeneous
Neumann conditions on θ = θ1, θ2 for r > 0 can be written as

φ =
∞∑
n=0

[AnJµn(kr) + Yµn(kr)] cos[µn(θ − θ1)], µn = nπ/(θ2 − θ1), (2.5)

where Jµn and Yµn denote Bessel functions of order µn and first and second kind, respectively.
Here the boundaries of the wedge are

θ1 = tan−1

(
−h−(x0)− ȳ

x0 − x̄

)
, θ2 = tan−1

(
h+(x0)− ȳ
x0 − x̄

)
,

and we’ve assumed that the channel is locally widening, so that x̄ < x0; a similar expression results
if the channel is locally narrowing.

In the limit as the channel walls straighten out, we recover from (2.5) the uniform width solution
(2.3). To see this, write h′±(x0) = εh̄′±(x0) and w′(x0) = εw̄′(x0), in which 0 < ε � 1 and
h̄′±(x0), w̄′(x0) = O(1), and consider the limit ε→ 0. Then

r =
[
(x− x̄)2 + (y − ȳ)2

]1/2
=

w

εw̄′
+ (x− x0) +O(ε)

and µn = nπ/εw̄′ +O(ε), in which w, w̄′ etc. are all evaluated at x = x0, so that

Jµn(kr) ∼ Jnπ/εw̄′
(
nπ

εw̄′
× k

nπ
[w + εw̄′(x− x0)]

)
,

and similarly for Yµn(kr). If kw/nπ < 1 then use of Debye’s asymptotics for Bessel functions of
large argument and order (e.g. [3, Eq. (9.3.2)]) shows that

Jµn(kr) ∼ constant× exp(x
√
α2
n − k2),

which agrees with the form of the modes (2.3) which grow as x increases. A similar calculation for
Yµn(kr) recovers the modes which decay with increasing x. (If n = 0, the standard expansions of
J0 and Y0 for large argument yields the analogous results.) If instead kw/nπ > 1 then use of [3,
Eq. (9.3.3)] gives

Jµn(kr) ∼ constant× cos[(x− x0)
√
k2 − α2

n]

and
Yµn(kr) ∼ constant× sin[(x− x0)

√
k2 − α2

n]



as ε → 0, which can be combined to give the form of the propagating modes from (2.3). (For
simplicity we suppose here that k doesn’t coincide with a cut-off frequency αn.)

More interesting for our purposes is the behaviour of the azimuthal terms in (2.5) in the limit ε→ 0.
With a bit of rearranging, we have

µn = nπ

/
tan−1

(
εw̄′

1− ε2h̄′−h̄′+

)
(2.6)

=
nπ

εw̄′
+O(ε), (2.7)

so that, when combining (2.7) with the behaviour

θ − θ1 =
εw̄′

w
(y + h−) +O(ε2)

we see that
cos[µn(θ − θ1)] ∼ cos[nπ(y + h−)/w]

as ε → 0, which agrees with the form of φ(n) in (2.3). However, retaining the full expression (2.6)
yields the approximate cross-channel structure

cos[µn(θ − θ1)] ≈ cos[ᾱn(y + h−)], (2.8)

where

ᾱn = αn

(
εw̄′
/

tan−1

(
εw̄′

1− ε2h̄′−h̄′+

))
≡ αn

(
w′
/

tan−1

(
w′

1− h′−h′+

))
. (2.9)

In (2.9), αn is recovered if the width w is unchanging with x.

2.1.2 An extended multi-modal expansion

Given (2.9), we propose an extended multi-modal expansion

φ ≈ φ̄ =

M∑
n=0

vn(x)φ̄(n)(h±(x), h′±(x), y), φ̄(n)(h±, h
′
±, y) = cos[ᾱn(y + h−)]. (2.10)

Numerical results using this expansion will presented at the Workshop.
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