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Highlights:  

 A time-domain nonlinear potential model is developed 

to solve wave-body interactions in a realistic sea state.  

 

 Nonlinearity is demonstrated through simulating 

focused waves and wave diffraction by side-by-side 

barges subject to an irregular wave field. 

 

1. Introduction  

This abstract aims to present a nonlinear potential flow 

model which generates a realistic sea state and solves 

wave-body interaction problems. The fully nonlinear 

potential flow theory (FNPF) remains one of the 

advanced and efficient methods to model water waves 

and wave-body interactions. Recently, various 

numerical models have been developed in order to 

implement FNPF efficiently. Engsig-Karup et al. [1] 

presented a higher-order finite difference (FD) model, 

OceanWave3D, which was proved very accurate in 

simulating wave-wave and wave-body interactions by 

comparisons against experiments. Guerber et al. [2] 

presented a two-dimensional model with a freely or 

forced moving submerged horizontal cylinder and 

solved the boundary value problem by a higher-order 

boundary element method (HOBEM), which was 

simulated to represent the wave energy converters 

(WECs). Targeted at improving the computational 

efficiency, Shao and Faltinsen [3] developed a new 3D 

FNPF model based on harmonic polynomial cells. The 

computational domain is discretized by harmonic 

polynomials such that velocity potential at each field 

point is interpolated by a set of harmonic polynomials. 

However, these models focus much on modelling 

regular wave fields. Ducrozet et al. [4] presented a 

modified higher-order spectral (HOS) nonlinear 

potential model with a controlled wave maker. The key 

point in the modified model is wave generation by an 

additional potential which satisfies the no-flux condition 

on wave maker and nonlinear free surface conditions. 

Validation cases of 2D irregular waves and 3D focused 

waves illustrate high accuracy with comparisons against 

experimental data.  

In this abstract, we present a 3D FNPF model based 

on HOBEM and focus on modelling irregular wave 

fields and wave-body interactions in a realistic sea state. 

One of our concerns is the associated nonlinearity 

which is yet much discussed in the previous work. 

We first simulate a 2D focused wave in a rectangular 

numerical wave tank (NWT). Of interest is the presence 

of higher frequency components induced by nonlinear 

wave-wave interactions, which however cannot be 

identified in linear models. To improve computational 

efficiency, we modified the rectangular NWT into a 

circular tank. In the modified tank, no wave maker is 

modelled; instead, we impose an irregular wave field as 

an incoming wave. Only the scattered wave field needs 

to be solved. To demonstrate its capacity, we simulate a 

case of two side-by-side barges in a realistic sea state 

and comparisons with model tests are presented. The 

nonlinearity in the wave response is investigated. 

2. Numerical model 

2.1 Rectangular NWT 

Following the basic assumptions of FNPF theory, i.e. 

fluid is incompressible, inviscid and flow irrotational, 

the velocity potential (x,y,z,t) satisfies the Laplace 

equation in the domain, 
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On the free water surface SF, the kinematic and dynamic 

boundary conditions in the Lagrangian description are 
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where D/Dt is the material derivative, X denotes the 

position of water particles on the free water surface. On 

solid walls, non-flux condition is satisfied. 

A wave maker is located at one end of the 

rectangular tank, and a numerical beach is placed at the 

other end to avoid reflection from the end wall. In order 

to generate any desired irregular wave field, we need to 

specify the movement of wave maker (piston type). 

Given any targeted wave spectrum S(ω) (discretized 

into N harmonics), the displacement of wave maker is 

specified as 
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where e0 is a transfer function; ωn is the wave frequency, 

kn the wave number, and pn the phase offset of the nth 

component. In addition, h is the water depth and Δω is 

the frequency interval. xp is a reference position, and in 

the case of focused waves it is the focal point. More 

details on the irregular wave generation can be found in 

Frigaard et al. [5]. 

 

2.2 Circular tank model  

While modelling wave-body interaction problems using 

the above rectangular NWT, the side wall effect 

becomes significant, unless in a very wide tank which 

requires huge computational effort. In order to eliminate 

tank wall effects and improve computational efficiency, 

we develop a nonlinear decomposition model which 

solves wave-body interactions in a circular tank. In the 

decomposition model, the incident wave field is 

specified explicitly while only the scattered wave is 

solved instead of computing the original total wave.  

The total velocity potential (x,y,z,t) can be separated 

into an incident wave part and a scattered part, i.e.  = 

I+S. The free surface is updated from the 

contributions of incident and scattered velocities. The 

incident flow potential and velocities are evaluated 

explicitly in the fluid domain. By substituting the 

separation of potential and elevation into Eqns. (1), (2) 

and (3), the decomposition leads to the following 

boundary value problem (BVP) for the scattered 

component: 
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with boundary conditions on free surface: 
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and on body surfaces: 
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where the subscripts ‘I’ and ‘S’ denote the components 

of incident and scattered waves respectively.  

The generation of a realistic sea state is similar to 

that in the rectangular wave tank, except that there is no 

wave maker in this circular tank. Once the energy 

spectrum is chosen, the free surface elevation and the 

velocity potential can be calculated as a sum of N (N 

should be large enough to reproduce the desired 

spectrum) harmonics, 
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where An is the amplitude of the nth wave component. 

The phase is a random function following the standard 

uniform distribution, ranging from 0 to 2π. No transfer 

function is required due to the nature that no wave 

maker is used in this model.  

A higher-order boundary element method (HOBEM) 

is employed to simulate the wave-body interactions in 

the time domain. Time integration is performed via the 

4th order Runge-Kutta scheme, and free surface 

conditions are updated based on a Mixed Eulerian 

-Lagrangian scheme. 

3. 2D Focused waves  

We employ the rectangular NWT presented in Section 

2.1 to simulate 2D focused waves. In our higher-order 

boundary element simulations, the focused waves (Case 

D55) are performed in a water depth of 0.7 m, of which 

the nonlinearity has been validated through comparison 

with the experimental results in Baldock et al. [6]. The 

wave conditions are designed according to the 

configuration of Case D (with the input amplitude of 

55mm) in Baldock et al. [6]. The wave group is 

comprised of 29 individual wave components and they 

are subject to a spectrum within a wave period range 

(0.8 - 1.2s). 

The time history of the simulated wave elevation at 

focal point is compared with the experimental data as 

shown in Fig. 1 and the linear prediction is also 

included. A good agreement is achieved between the 

present numerical result and the experimental data, 

while the linear prediction is different from them. It is 

observed that the discrepancy is especially remarkable 

at the focused crest. This may be due to the contribution 

of nonlinear interaction between different wave 

components during the wave propagation. Fig. 2 shows 

the normalized power spectra derived from the data of 

the three time histories shown in Fig. 1. The normalized 

power spectrum of the present numerical result (black 

solid line) is very close to that of the experimental result 

(black dot line), though both of them significantly 

diverge from the spectrum derived from the linear 

prediction (gray dash line). There is a minor energy 

leakage towards the lower harmonics, while a large 

amount of energy is transferred to the higher harmonics. 

The significant redistribution of the wave energy is 

clearly identified and again confirms that the energy 

transferred into higher harmonics mainly results in the 

crest discrepancy shown in Fig. 1. This may suggest that 



the nonlinear wave-wave interaction, which is one of 

the essential features in the realistic irregular wave field, 

is also incorporated in the present numerical wave 

model. 

 
Fig. 1. Comparisons of the time history of wave elevation at 

the focal point 

 

 
Fig. 2. Normalized power spectra derived from the time 

histories  

4. Twin-barge in irregular waves  

The circular tank model presented in Section 2.2 is 

employed to simulate wave-body interaction problems. 

The problem of gap resonance has attracted much 

attention recently due to unrealistic predictions of wave 

response from linear models. We consider a case of two 

side-by-side rectangular barges, which has been 

investigated in Molin et al. [7]. The configuration of the 

side-by-side barges at model scale is as follows: barge 

length is 2.47 m, width 0.6 m, draft 0.18 m and gap 

width 0.12 m. The water depth is set as 3 m (the same as 

in the tests), and the tank radius for the present 

simulations is either 5 m or four times the incident wave 

length, whichever is larger. The incident wave heading 

considered here is 90 degrees, i.e. beam sea. In the 

experiments in Molin et al. [7], the barges are fixed and 

subject to an irregular sea state with the 

Pierson-Moskowitz spectrum of a significant wave 

height Hs = 0.02 m and a peak period Tp = 1 s. In our 

simulations, we utilize the same PM spectrum, and 

consider only the beam sea situations. The frequency 

range is truncated to 3~20 rad/s which covers more than 

95% of the energy. The number of wave components is 

N = 480 which is large enough for the accurate 

reproduction of the targeted spectrum. With a small 

time step in the long time simulations, no numerical 

instability was encountered despite of inclusion of some 

short-period wave components. A typical time history 

of output surface elevation in the gap at midship is 

plotted in Fig. 3, which is normalized by the significant 

wave amplitude As (defined as half the significant wave 

height here). 

 

 

Fig. 3. Time history of elevation in the gap at midship with 

side-by-side barges in beam sea subject to a PM spectrum 

 

(a) (b)  

(c) (d)   

Fig. 4. Contours of free surface elevations near the barges 

subject to irregular waves at different time instants: (a) t =14.5 

s; (b) t = 15.7 s; (c) t = 20.4 s and (d) t = 24.4 s 

 

Fig. 5. Free surface RAOs in the gap at midship with barges in 

beam sea subjected to PM spectrum of Hs = 0.02 m and Tp = 1 

s 

  An overview of the free surface elevations near the 

barges at some time instants is shown in Fig. 4. 

Although the surface elevations along the wave 

propagating direction (unidirectional incident wave) are 
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mostly random, some peak regions can be clearly 

recognized within the gap at certain time instants, which 

indicates the possible trapping or resonant phenomenon. 

For instance, at t = 14.5 s in Fig. 4(a) we can observe 

three peak regions distributed along the narrow gap; and 

at t = 24.4 s the whole surface in the gap tends to be 

high except at the two openings. This figure implies that 

in random wave simulations wave in the gap may 

experience all the possible resonant modes at different 

time instants in one run if the numerical model is fine 

enough and the simulation runs for an enough long 

time. 

  A close investigation ought to be done by spectral 

analysis, in order to make a direct comparison against 

the experimental results in Molin et al. [7]. To obtain 

response RAOs, cross spectral analysis is utilized in 

processing the recorded time histories of the present 

simulations. However, with a single set of record of 

signals, the generated energy spectrum tends to be raw 

with large errors. To achieve a convergent results from 

the statistical point of view, we repeat the run for ten 

times and each run contains 200 s simulating time, with 

considering the computing resources. The resulting 

RAOs are predicted by averaging the results in these ten 

runs. One must bear in mind that in this process 

information within the small frequency interval of 1/200 

Hz might be missing according to the current adopted 

simulating time and sampling rate.  

  Fig. 5 shows the response RAOs of the surface 

elevation in the gap at midship with side-by-side barges 

in beam sea. It can be seen that our results demonstrate 

a similar character to that of the experiments, where 

several peaks are formed at certain frequencies. These 

peaks are corresponding to the associated wave 

resonances in the gap. The resonant frequencies are well 

captured at these peaks in Fig. 5, and the overall 

agreement of RAO values with the experiments is 

favorable except at the second and third peaks. Our 

simulation generates a higher value at the second peak, 

but a lower one at the third peak than the experiments. It 

is noticed that the present frequency range near 

resonances tend to be broader at higher modes, and the 

peak values are reduced at higher modes compared to 

that at lower ones, which seem reasonable. A fourth 

peak is also formed near the frequency 9.5 rad/s, 

however this mode is even broader and the peak value is 

much lower compared to the first mode. The simulation 

in irregular waves, as in the experiments, can 

successfully capture the possible resonant modes, the 

accuracy, anyhow, is limited by the fact that the 

responses are extracted from time recordings at 

corresponding positions through spectral analysis. This 

is sensitive in regard to obtaining precise RAOs with a 

small frequency interval (this is similar to that in the 

experiments, as commented by Molin et al. [7]). 

  As far as the nonlinearity concerns, we impose an 

irregular sea state of low significant wave height Hs = 

0.002 m as the incident wave. We repeat the case with 

the same parameters including the random phases of 

every wave components in the incident wave, except for 

the significant wave height. A comparison of wave 

elevation in the gap at midship is presented in Fig. 6 for 

these two spectra. Both elevations are normalized by 

significant wave amplitude AS. The difference between 

the elevations can be explained by the nonlinearities in 

the decomposition model, although the incident wave 

fields are represented by linear wave combinations. This 

suggests that the present decomposition model is able to 

capture nonlinear effects despite of adopting a simple 

irregular wave model as the incident wave. 

 

Fig.6. Comparison of wave elevation in the gap at midship for 

spectra of different significant wave heights 

5. Conclusions 

We demonstrate the accuracy of a nonlinear potential 

flow model by simulating focused waves. The 

nonlinearity in wave-wave interactions explains the 

discrepancy between linear prediction and experiments. 

Capability of a nonlinear decomposition model is 

illustrated by modelling the case of side-by-side barges 

subject to a realistic sea state. Nonlinearity associated 

with wave-body interactions is also identifies. 
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