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Highlights: A new method is described to evaluate the transient Green function over a quadrilateral panel. This method 

is more accurate than numerical integration schemes. The method greatly improves the computational efficiency of time 

domain panel methods for seakeeping simulations. 

1. Introduction 

In time domain panel methods the transient Green function can be used to account for free surface effects. The Green 

function and its derivatives need to be integrated both in space (over the panel area) and in time. This process requires a 

large amount of computer time, especially in the body non-linear method where at each time step the complete 

convolution integral has to be computed. 

Furthermore, it is difficult to achieve sufficient accuracy by means of numerical quadrature due to the highly 

oscillating nature if the Green function. This is especially true for panels located close to the free surface and for 

waterline elements.  

This paper describes a more analytical integration method that improves the accuracy and also the computational 

efficiency. 

 

2. Integral expressions 

It is assumed that the panel method uses quadrilateral surface panels with a constant strength source and/or doublet 

strength. The free surface Green function integrated over the panel area S is defined by G
P
: 
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here t is time, τ is past time, k is the wave number, J0 is the Bessel function of order 0 and S is the panel area. All physical 

quantities used are made non-dimensional on basis of a reference length and the gravitational constant. Furthermore: 
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A local panel axis system (ξl ,ηl ,ζl) with its origin in the panel collocation point is defined. The integration uses local 

cylindrical coordinates (rl, θl) at each corner point p of the quadrilateral panel. By defining: 
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where t13 and t23 are elements of the coordinate transformation matrix from the local panel reference frame to the global 

reference frame, and changing the order of the surface and wave number integration, the integral for a single corner point 

is written as: 
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We can express J0 (kr) as a function of rl and rp by using the addition theorem for Bessel functions: 
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where rl2 is the horizontal component of rl and θ is the angle between rl2 and rc. Inserting this expression in Eq. (5) and 

summing over the four corner points yields the following expression: 
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The surface integral Eq. (7) is the sum of four integrals, one over each corner point, whereby the radius rl is taken from 

zero to infinity. The first corner point (1) is the point with the maximum (z+ζ) value such that the constant α2 is negative 

and the integral exists. For the integrals over corner points 2 and 3 a minus sign must be added. The integral over the last 

corner point (4) is positive again to compensate for the negative parts in the integrals over points 2 and 3. The radial 

integration limits are θli1 and θli2, for corner point i. 

After a lengthy process involving recurrence relations and partial integration PG can be expressed by means of a 

double and a single integral for each corner point: 
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3. Initial value problem 

By means of partial integration the integrals in Eq. (8) can be shown to satisfy the initial value problem: 
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The material second time derivative can be expressed as: 
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the subscript t denotes the derivative with respect to time t . 

Three basic Green functions present in Eq. (9) and (10) are defined by: 
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These three Green functions can be expressed in a separate initial value problem. For the zero forward speed case 

Clement  [1] provides the initial value problem for 
f

sG . For forward speed conditions, the material derivatives can be 
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obtained as well and the initial value problems for , and 
ff f

s c ctG G G can be solved simultaneously with the initial value 

problem of the integral of f
sG over the panel area, Eq. (10). Time integrals and derivatives can be obtained at the same 

time. This approach is efficient and accurate for not too small |δ| values. For small |δ| values (typically |δ|<0.05) the 

efficiency and accuracy deteriorate and the series expansions described in the next section must be used. 

4. Series expansions - Small β values 

For series expansions the integral expression for 
P

ttG  in Eq. (9) is the starting point, expressed in terms of the non-

dimensional (µ, β, δ, α) parameters. 
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The cosine term in the infinite integral in Eq. (12) can be expanded in an infinite series yielding: 
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Using expansions for ,f
cG developed by Newman [2] and combing the two terms in to a single series expansion 

yields: 
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Recurrence relations can be used to evaluate this infinite series. Integrals and derivatives of Eq. (12) can be evaluated in a 

analogous fashion. 

5. Series Expansions - Large β values 

The starting point is the same integral as used in Eq. (12), but now written as an indefinite integral: 
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For ‘large’ β values (β>9) the asymptotic expansion for ,f
cG developed by Newman [2] is used.  
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For the second term in Equation (12) an asymptotic expansion can be derived through the use of Watson’s Lemma [3]: 
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Substitution of these expansions for 1 ,
f

cG s  and 2 ,
f

cG s and Eq. (17) in Eq. (15) yields: 

2 2

2 2 2

2
2 2/4 /4

1 22
0

/4 2 /4 2( ) /4
2

0 0

1

2 1 !4
1  

!

2 ( 4)  4 ,  with

2
  =  , 

s

P
n nn s

n

n

n m n m s n m
n nm l

n m

l

l

nd G
c P c e e s ds

nd

n
i

e c d e s ds c e

c i
s  and l i

  (18) 

The terms in these summations can again be obtained efficiently via recursion. 

6. Application 

For a typical "difficult" case a comparison is given between the new method (G-anal) and the existing Gaussian 

quadrature method (G-num). The conditions are:  

 Panel dimensions 2x2 m, centroid position (ξ0,η0,ζ0) = (0.0, 0.0, -0.01), panel normal vector n=(0.10, 0.0, 0.995) 

 Initial position field point (x0,y0,z0) = (-5.0, 2.0, -0.01)  

 Field point travelling with a speed U of 2.5 m/s in positive x-direction (x=x0+Ut) 

 Gaussian quadrature: 16 sub panels, on each sub panel a 9-point integration rule is applied.  

 

Figures 1 and 2 show that results for G (Eq. 1) are fairly similar, except around t = 2 sec, i.e. when the field point is 

close to the panel. The more analytical method shows a much smoother behaviour than the numerical method. 

                   

Figure 1  Comparison G-functions    Figure 2  Comparison G-functions - detail 
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